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Abstract Double-difference seismic tomography can estimate velocity structure and
event locations with high precision, but its high-computation cost along with large
memory usage prevents the use of a personal computer to process very large datasets
and requires a long-computation time. This work proposes graphics-processing-unit-
(GPU)-based acceleration schemes to run the algorithm on a personal computer for very
large datasets more efficiently. Generally, the algorithm can be divided into five major
steps: input, ray tracing, matrix construction, inversion, and output. This work focuses
on accelerating the ray-tracing and inversion steps, which take almost two-thirds of the
computation time. Before ray tracing, our algorithm preprocesses the data by sorting all
recorded event–station paths according to their lengths. Therefore, those path estimation
jobs assigned to GPU cores are suitable for the GPU architecture. Furthermore, our work
also minimizes the usage of global and local memory to reduce the GPU computing time
needed to handle a very large dataset. In addition to parallelizing the inversion com-
putation, our work proposes a GPU-based elimination method to reduce redundant com-
putation in inversion for further acceleration. In our test, the proposed acceleration
schemes can gain maximum speed-up factors of 31.17 and 35.46 for ray tracing and
inversion, respectively, in our test. Overall, the GPU-based implementation can reach a
maximum of 5.98 times faster than the central processing unit-based implementation.

Introduction

Understanding the velocity structure of a region is
important for resource exploration and development as well
as for better understanding the tectonic process. There are
several ways to estimate the subsurface velocity structure,
and double-difference (DD) tomography by Zhang and
Thurber (2003) is one of them. DD tomography uses ob-
served arrival times at different observation points for simul-
taneous estimation of velocity structure and the locations of
the earthquakes. The algorithm at a local scale assumes a flat
earth model and uses waveform cross-correlation (WCC)
techniques (VanDecar and Crosson, 1990) to calculate the
differential arrival times for pairs of events at common
stations. The main advantage of this method is that a high
resolution of subsurface velocity structure can be esti-
mated in a region of high-earthquake density. However, this
method generally requires a large number of iterations to
construct the set of estimated seismic ray paths and
invert for the structure and location perturbations and thus,
it usually takes a long time to compute and requires a large
amount of memory usage to store all intermediate data.
Therefore, this study aims at accelerating the computation
process to save time and making it possible to run very large
datasets on a personal computer.

Because the computations in ray tracing and matrix
operations in least-squares inversion are independent, they
can be parallelized to accelerate the computations. The pre-
vious studies used a cluster of computers to accelerate the
algorithm. However, Grunberg et al. (2004) have shown that
the large amount of data transfer decreases the amount of
acceleration due to the bandwidth limitation of a local area
network. Because a cluster of computers is expensive, the
recent advanced graphics processing units (GPUs) with
highly parallel processing abilities provide an alternative
method for accelerating the DD tomography algorithm.
The many cores and onboard memory can provide the nec-
essary abilities to simultaneously handle independent com-
putation in parallel.

This study focuses on designing acceleration schemes
for the DD tomography algorithm with a parallel processing
many-core GPU. Generally, DD tomography can be divided
into five main steps: input, ray tracing, matrix construction,
least-squares inversion, and output which will be given in
more details in the Background section. Currently, the
present study focuses on two of the three most time-consum-
ing steps: ray tracing and least-squares inversion. Ray tracing
determines the path of minimum travel time from the
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earthquake to the observing station. A central-processing-
unit- (CPU)-based implementation does not need to consider
the length of a path because all path computations are done in
a sequential order, and it does not matter which one comes
first. However, the GPU-based algorithm carries out path
estimation in a parallel structure, and when a set of paths of
different lengths are sent simultaneously to the GPU cores for
processing, their estimation requires very different computa-
tion times, and this reduces the efficiency of utilization of the
GPU cores. As a result, to make those computations assigned
to a set of cores at the same time slot have a similar compu-
tation time, we first sort the estimated paths based on their
straight distance between the station and the event location,
and the paths are grouped based on a similar distance. Each
path then can be estimated independently using a GPU
core. Next, we consider the matrix for least-squares inver-
sion. The matrix consists of redundant elements produced
by the system. We introduced a GPU-based elimination
method to remove these redundant elements and then paral-
lelize the inversion process with a GPU-based matrix inver-
sion algorithm.

For the entire algorithm, in this study, we minimize the
amount of global and local memory usage to reduce the num-
ber of passes. (When handling a very large dataset, the
memory requirement will be over the limit of a GPU. Thus,
the computation must be divided into several groups that are
sent to a GPU consecutively. Each sending event is defined as
a pass.) The empirical results show that the GPU-based
acceleration can significantly improve the efficiency of DD
tomography. Overall, the GPU-based method shows an accel-
eration of the ray-tracing process by a rate of 10.88 and 31.17
times and the least-squares inversion process by a rate of 2.28
and 35.46 times on two test datasets.

This study shows the following: (1) our GPU-based
implementation accelerates the DD tomography algorithm by
a rate of 2.98 and 5.87 for the two datasets, (2) we introduced
a sorting process to make the loading of the data more bal-
anced to reduce the waiting time, (3) elimination of redun-
dant elements reduces the size of the sparse array and the

computation time for matrix inversion, and (4) the present
approach also reduces memory usage and finds the best ex-
ecution order to optimize the performance.

Background

GPU and CUDA

A GPU (Nvidia, 2009) consists of a cluster of cores that
are independent computing units and are optimized to simul-
taneously perform the same operation on a large set of data.
Compute unified device architecture (CUDA; Nvidia, 2009)
is designed to develop parallel algorithms on many cores.
Several examples including Jeong et al. (2006), Kadlec and
Dorn (2010), and Wang et al. (2010) have used GPU to
accelerate the seismic data processing operations. Similarly,
the computations of ray-tracing and inversion processes
are highly independent. Therefore, this study demonstrates
the possibility for GPU-based implementation of DD
tomography.

DD Tomography

DD tomography (Fig. 1) uses two separate but close
events to simultaneously estimate the locations of earth-
quakes and the velocity structure accurately. The double dif-
ference can be defined as

drijk � �Ti
k − Tj

k�obs − �Ti
k − Tj

k�cal

� �Tiobs
k − Tical

k � − �Tjobs

k − Tjcal

k �; �1�

in which i and j are indexes of earthquake events, k is the
index of an observing station, Ti

k is the arrival time of earth-
quake i at the observing station k, �Ti

k − Tj
k�obs denotes the

difference of the observed arrival time for event i and j at the
observing station k, and �Ti

k − Tj
k�cal denotes the difference

of the calculated arrival time for event i and j at the observing
station k. Note that DD tomography also uses absolute arrival
times for estimation of subsurface velocity structure and

Figure 1. The workflow of DD tomography. It generally has five major steps: input, ray tracing, matrix construction, least-squares
inversion, and output. The input and output are only done once, and the other three are done consecutively and iteratively.
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earthquake locations as in conventional tomography
(Zhang, 2003).

The input to the algorithm is a set of values including the
locations of events and observing stations, arrival times of
the P- and S-waves at the observing stations and the cross-
correlated time lags for these waves at the observing stations
using WCC (VanDecar and Crosson, 1990). A pseudobend-
ing ray-tracing algorithm (Zhang and Thurber, 2003) traces
the event tracks through the subsurface velocity structure to
estimate �Ti

k − Tj
k�cal. Because the approximate paths with

the shortest travel times are independent of each other, these
path estimations can be processed in parallel, and the entire
ray-tracing process can be accelerated by a GPU. The parallel
acceleration scheme will be given in detail in the Accelerate
Ray Tracing with a GPU section.

After constructing the double differences, the informa-
tion can be used to update the original event locations and
velocity structure. According to Zhang and Thurber (2006),
equation (1) can be rewritten as

QDDΔT � QDDAΔX�QDDCΔM; �2�

in which QDD is the DD operator, ΔT is the vector of the
arrival time residuals, A is the partial derivative matrix with
respect to the event locations and origin times, ΔX is the per-
turbation vector of event locations and origin times, C is the
model derivative matrix with respect to the slowness model,
and ΔM is the vector of slowness perturbations. ΔX and ΔM
can be used to determine the convergence of the estimation
of locations and velocity structure. In equation (2), QDD is
fixed and A and C must be calculated every time when the
event locations and velocity structure change. In this study,
we term the process of updatingA andC the matrix construc-
tion process.

To solve ΔX and ΔM, equation (2) can be further trans-
formed to the following form:

Y � QDDE
wE

� �−1 QDD

wI

� �
ΔT; �3�

in which E � �A C � , Y � ΔX
ΔM

� �
, w is the relative

weighting between absolute and relative arrival times as de-
fined in Zhang and Thurber (2003), which is varied in a
progressive manner, and I is the identity matrix. Equation (3)
can be solved with the LSQR algorithm (Paige and Saunders,
1982). The main operations for the least-squares matrix proc-
ess are scaling vectors and matrix multiplications, which can
be naturally accelerated by a GPU. Thus, our work will also
adapt a GPU-based LSQR scheme proposed in Huang et al.
(2012) to parallelize the least-squares inversion process. Be-
fore solving equation (3), both A and C are sparse matrixes
and the number of nonzero elements affects the inversion
time. We found that there are redundant elements which
are produced by the system. Those elements do not affect
the computation results and the CPU computation speed,

but are not suitable for the GPU computation. Therefore, this
work also tries to eliminate those elements to enhance the
computational efficiency on GPU (details will be shown in
the LSQR with a GPU section). After solving equation (3),
ΔX andΔM are used to update the event locations and veloc-
ity structure until they converge.

GPU Implementation

As discussed in the DD Tomography section, the input
and output processes are fixed and can only be accelerated by
improving the read/write hardware. The iterative ray tracing,
matrix construction, and least-squares inversion steps are the
factors for the GPU-based acceleration. To accelerate the
algorithm, in this study, we first analyze the performance of
each step to identify key factors in these steps and then focus
on the schemes to parallelize them with a GPU.

The proper programming model for a GPU is single
instruction, multiple threads (SIMT), that is, an instruction
can run on a set of different data using multiple threads.
CUDA organizes threads into block-and-grid structures, and
each block is assigned to a set of cores to execute in a single
warp (a group of cores executing at the same time on differ-
ent data) at the same time. Next, we used the term job to
indicate a set of computations sent to a core. To fulfill this
programming model, the jobs run in a warp should have a
similar number of instructions to make all jobs finish at
roughly the same time. In our implementation, every path-
estimation job is split into parts as small and similar as pos-
sible to follow the SIMT model and parallelize the similar
path estimation.

Accelerate Ray Tracing with a GPU

Because the original DD tomography algorithm (Zhang,
2003) has many intermediate variables that exceed the limit
of a GPU, in this study, we decompose the computation of a
path into several jobs for parallel acceleration in the GPU ar-
chitecture. However, the result of a path estimation job does
not affect the result of other path estimation jobs, that is, all
path computations are independent from each other. There-
fore, in this study, we optimize the usage of memory and the
placement of memory to reduce the number of GPU passes in
each iteration and achieve good memory access performance
inside a GPU.

Data including the locations of stations and events,
slowness perturbations, and inversion parameters are needed
and allocated in the GPU memory. However, when estimating
a path, the thread needs to temporarily record intermediate
information, and the memory used by a thread can be up to
178.4 kb for our larger dataset. Because approximate pseu-
dobending ray tracing is designed to process each event–
station path in a sequential order, and each path computation
only needs to record one set of temporary intermediate data
of 178.4 kb, the memory usage is well under the system limit
on CPU. However, when running the computation jobs in
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many cores of a GPU, the memory needed for all threads can
exceed the limitation of a GPU. Without optimization, the
memory required to store all path information is more than
11.9 GB for the largest dataset in the test. It is too large to
allocate such a large memory on a GPU. Therefore, the
present method reexamines the memory usage to create a set
of memory space for those intermediate variables that only
appear once in the computation and eliminates 79% of the
required information for a path job. This can reduce the num-
ber of passes required when the number of paths is large.

Memory placement optimization is also important for
performance. The goal of placement is to maximize data
transfer bandwidth, that is, minimize data access time by us-
ing as much fast memory and as little slow-access memory as
possible. CUDA has several types of memory: (1) local
memory that is fast, but has limited amount of space, and
can be used to save the information of a path for a thread
because the information is accessed frequently and should
be cached for fast access, (2) global memory is another type,
which is slow, but has a very large volume of space, and can
be used to save the hypocenters and slowness model, and
(3) the third type is texture memory, which is also slow
and read-only, but has a caching mechanism for a warp of
cores, which provide faster reading access than global
memory. It can be used to save the velocity structure, because
it is queried when estimating the travel time of a wave pass-
ing through.

Even after reducing the size of information kept for each
path, the memory required for processing all paths at the
same time is still too high to fulfill, and therefore, our work
decomposes the ray-tracing process into four small substeps:
distance, straight ray, ray web, and pseudobending. Only a
few interstep data need to be kept in the memory, and all the
intermediate data in each substep is released. For example,
the straight distance of each path is computed in the distance
substep and only used in the straight substep. It should be
released after the straight substep. This can minimize the
amount of data required in any moment of the ray-tracing
process to allow the system to reduce the number of passes.
Additionally, the decomposition also can fulfill the program-

ming concepts, SIMT discussed in previous paragraphs, to
gain a better acceleration. Figure 2 presents the simplified
workflow of ray tracing.

The distance substep estimates the event–station straight
distance and travel time of each path which determines sev-
eral parameters for the following steps. All distance jobs are
collected into a pool and parallelized to GPU cores on a path-
based assignment scheme. The straight-ray substep con-
structs a straight path from the event location to the station,
estimates the travel time of the straight path, decides the
number of segments and sets up the required memory space
for the following computation. The main determining factor
in the ray tracing is the event–station distance. When putting
jobs having a different number of segments into the same
warp, some cores must wait for the others to finish the com-
putation due to the SIMT computation of a GPU. Therefore,
it is important to let jobs of a warp have a similar number of
segments, and thus, in this study, we sort the path jobs based
on their straight distance between the event location and
observing station. Then, the jobs with a similar size are as-
signed to GPU cores at a roughly similar time. Therefore,
sorting the distance is set up to run with the straight ray sub-
step in the CPU because when the CPU sorts the jobs, the GPU
can allocate memory for later usage at the same time. After
sorting paths, all estimation jobs are parallelized based on the
path-based assignment scheme. The ray web substep con-
structs a set of paths using a fixed set of radius of curvature
values for a path to identify a path with approximate minimal
travel time. All jobs are parallelized to GPU cores on a path-
based assignment scheme, but this substep uses a large
amount of memory because of the need to store a large set
of paths. The memory scheme mentioned at the beginning of
this section is applied to reduce the number of passes for a
large dataset to save time. The pseudobending substep iter-
atively perturbs the path until the travel-time difference is
less than a threshold. Paths are estimated independently from
each other, and thus the path-based parallel scheme can be
applied, too. Although the original pseudobending algorithm
is executed with two steps, in this study, we merge these two
steps into one to save the memory transfer time.

Figure 2. The workflow of the approximate pseudobending ray-tracing algorithm on graphics processing unit (GPU). For details of the
substeps, refer to the work by Thurber (1983) and Um and Thurber (1987).
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After dividing ray tracing into four substeps, because not
all of the jobs can simultaneously be computed at one time,
we separate them into several groups and send them in a de-
signed order to the GPU. As shown in Figure 3, GPU pro-
gramming yields two choices to submit these jobs into a
GPU: The first one is called breadth first search (BFS) which
processes all jobs belonging to the same substep at the same
time and then processes all jobs belonging to the next substep
after finishing. The second one is called depth first search
(DFS), which processes all computation jobs belonging to a
path estimation at the same time and then processes other
path-estimation jobs after finishing the current one. In
Figure 3, the set of cubes represents the computations of the
ray-tracing process. A cube drawn with dotted lines repre-
sents a set of jobs sent in a warp. A group of cubes sur-
rounded by black solid lines are a set of jobs submitted to
a GPU at the same time. The main difference between these
two methods is how to split the cubes. BFS slices the jobs
based on the substep order, and DFS slices the jobs based on
the path structure. Then, each sliced piece is sent to a GPU in
a sequential order with the streaming mechanism of a GPU to
reduce job launching time and data transfer time. Conceptu-
ally, when running these two methods in a CPU, the overall
time should be the same but as will be shown in Result and
Discussion section, assigning jobs based on BFS performs
better than assigning jobs based on DFS.

LSQR with a GPU

After matrix construction, we want to solve equation (3)
in a GPU. There are several algorithms to solve this equation,
and LSQR is a common choice in the seismic field (Muffels
et al., 2006). However, the original LSQR is designed to op-
erate sequentially. We adapt the approach of Huang et al.
(2012) to accelerate the LSQR process with a GPU. Figure 4
shows the workflow of the GPU-based LSQR in this work.
The GPU main computation uses CUDA-provided libraries
including CUSPARSE and CUBLAS for basic linear algebra

operations to iterate to convergence. The CPU implementa-
tion generally uses an array to store the elements and do the
sparse operations. When carefully examining the inversion
process, because the system eliminates elements the values
for which are smaller than a user-defined threshold in a sim-
ilar manner to Zhang and Thurber (2003), we found that the
CPU implementation eliminates these elements by swapping
them to the end of the array. The swapping saves the extra
cost of removing the element from the array, but those redun-
dant elements still occupy the memory space of the array.
The inversion process can use a branch statement to avoid
the computation of these redundant elements with almost
zero cost for a CPU, but the branch operation is costly in
the GPU computation. Additionally, transforming the sparse
matrix into the compressed sparse row (CSR) format (Nvidia,
2012) is required for CUDA, because CSR can make sparse
matrix multiplication operations faster and save memory us-
age. However, most sparse matrixes are recorded in coordi-
nate format (COO) (Nvidia, 2012) which is convenient for
access and construction. We transform the format before us-
ing the CUDA libraries. Therefore, the algorithm used in this
study merges the elimination of redundant elements and the
transformation of the CSR matrix into the first step. The sec-
ond step transfers the data from the CPU to the GPU and

Threads Thread

dohtem SFDdohtem SFB

Distance
Straight ray

Ray web
Pseudobending

Distance
Straight ray

Ray web
Pseudobending

Figure 3. The schematic concept of breadth first search (BFS) and depth first search (DFS). The thread axis shows the assigned se-
quential steps in a GPU. The distance cubes represent those distance computation jobs, the straight ray cubes represent those straight ray
computation jobs, the ray web cubes represent ray web computation jobs, and the pseudobending cubes represent those pseudobending
computation jobs. A group of cubes surrounded by black lines are a set of computation jobs assigned in the same warp into the GPU.
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Figure 4. The workflow of the LSQR algorithm on a GPU.
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allocates memory for computation. The third step is the iter-
ative inversion step including using CUBLAS to calculate
scale and norm operations and CUSPARSE to do the matrix
multiplication. The last step transfers the result back to the
CPU and cleans up the allocated memory.

Result and Discussion

This section will present the results of using GPU-based
implementation for seismic tomography. These results are
then compared with the traditional CPU-based calculation
to analyze the efficiency of the GPU implementation. These
two sets of data were collected by Parkfield Area Seismic
Observatory provided in Zhang et al. (2009). The two data-
sets are listed as: Parkfield1 which has 67 stations and 50
events and Parkfield2 which has 590 stations and 1562
events. The listed observing stations may not be able to de-
tect all seismic events and thus, the actually observed event–
station paths are 2799 in Parkfield1 and 67,038 in Parkfield2.
All statistics provided in this section are done with a personal
workstation for which the CPU is Intel Xeon E5506
2.13 GHz with a 6 GB DDR3 memory and the graphics card
is Nvidia GeForce GTX TITAN (Nvidia, 2013) which has
2688 CUDA cores and a 6 GB GDDR5 onboard memory.
The computer runs under Windows 7 SP1 (64-bits). The
GPU-based DD tomography algorithm is implemented with
CUDA version 5.0, CUBLAS, and CUSPARSE and the
CPU-based implementation is provided in Zhang and
Thurber (2003).

This study mainly focuses on accelerating the ray trac-
ing and least-squares inversion processes with a GPU. There-
fore, we will first give detailed analysis of the proposed
acceleration schemes and then present the overall perfor-
mance later. Table 1 lists the performance of the proposed
acceleration schemes for two datasets in the first iteration
of the computation. The GPU-based implementation com-
pleted all path estimation jobs much faster than the CPU-
based implementation. The acceleration rate is 10.88 times
for Parkfield1 and 31.71 times for Parkfield2 in the ray-
tracing process, and 2.28 times for Parkfield1 and 35.46
times for Parkfield2 in the least-squares inversion process.

Note that for these two datasets with very different sizes,
the GPU-based implementation becomes more efficient when
the data size becomes larger. To know why the GPU-based
implementation performs better in a larger dataset, we further
analyzed the time spent in the substeps of the ray tracing and
least-squares inversion processes.

As shown in Figure 5, the sorting process takes 0.60%
for Parkfield1 and 1.66% for Parkfield2, but the acceleration
rate can reach 1.03 times for Parkfield1 and 3.28 times for
Parkfield2 when assigning jobs based on the sorting results,
as shown in Figure 6. This demonstrates that sorting can
make the utilization of GPU cores better especially for
paths with significantly varied lengths. Obviously, the
acceleration rate of each substep (Fig. 7) increases with the
size of the dataset. The Parkfield1 dataset in each substep has
a similar acceleration rate, but the Parkfield2 dataset in each
substep has a very different acceleration rate. The distance,
straight ray, and pseudobending substeps are accelerated sig-
nificantly when the size of the data is increased. In addition,
the pseudobending substep has been accelerated the most,
with an acceleration rate of 78.33 times, because the data
access is sequential and sequential memory access is highly
optimized in the GPU architecture. The ray web substep gains
the least-acceleration rate because the process requires a
huge amount of memory writing operations to record all pos-
sible tracks derived from different radius of curvatures for a
path estimation job and highly random memory access. We
also compare the performance difference when implement-
ing each substep with the BFS and DFS methods (Fig. 6).
The one implemented with BFS is 1.03 times faster for Park-
field1 and 1.71 times faster for Parkfield2 than DFS. This is
because the BFS job assignment follows the SIMT program-
ming model better by making jobs in the same warp with
similar instructions. The DFS job assignment has a larger and
more varied number of instructions to prolong the computa-
tion time. Therefore, the execution order of substeps impacts
the entire acceleration rate.

Figure 6 shows the acceleration rates when separately
applying different acceleration schemes, including sort, BFS,
and redundant element elimination schemes. The accelera-
tion rate with the element elimination scheme is 1.04 times

Table 1
The Computation Time with the CPU- and GPU-Based Implementation and the Speed-Up Ratio

of the GPU-Based Implementation

Ray Tracing Matrix Construction Least-Squares Inversion Entire Process

PF1* PF2† PF1 PF2 PF1 PF2 PF1 PF2

CPU time‡ (s) 2.132 33.708 0.643 31.022 0.527 26.277 40.697 1124.56
GPU time§ (s) 0.196 1.063 0.755 18.730 0.231 0.741 13.651 191.562
Speed-upk 10.88 31.71 0.85 1.66 2.28 35.46 2.98 5.87

*PF1 is Parkfield1 dataset.
†PF2 is Parkfield2 dataset.
‡CPU time is the time for the CPU-based implementation.
§GPU time is the time for the GPU-based implementation.
kSpeed-up is the speed-up ratio of the GPU-based implementation over the CPU-based implementation.
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for Parkfield1 and 12.45 times for Parkfield2 on GPU. The
time considered includes the redundant element elimination.
Obviously, our scheme can get a better acceleration rate in
Parkfield2 because more elements are eliminated: 83.62% of
elements are eliminated in Parkfield2. However, because
only 3.8% are eliminated in Parkfield1, the acceleration rate
is not significant for elimination. When further analyzing the
computation time of each substep (Fig. 8), we found that the
elimination and transformation scheme takes 48.63% in
Parkfield1 and 61.33% in Parkfield2, but they can gain im-
portant acceleration for both datasets. This shows that elimi-
nation is more important for GPU operations. Furthermore,
the pure acceleration rate of GPU-based LSQR can reach
5.83 for Parkfield1 and 15.10 for Parkfield2 when comparing

the inversion performance without considering data transfor-
mation which includes elimination, preprocess, and postpro-
cess. We can see that the data transform drags the
acceleration down and is the bottleneck for this step.

Table 1 shows the sum-up for overall accelerations with
all acceleration schemes. The complete computation time in-
cludes the input, output, and 14 iterations of the ray tracing,
matrix construction, and least-squares inversion processes
for both datasets. The GPU-based implementation is 2.98
times faster for Parkfield1 and 5.87 times faster for
Parkfield2 than the CPU-based implementation, because the
matrix construction step drags down the overall acceleration.
The matrix construction process can only be accelerated by
0.85 times in Parkfield1 and 1.66 times in Parkfield2, and it
occupies about one-third of the computation time. In Park-
field1, the matrix construction process consumes 1=6 of the

Figure 5. The percentage of time used in each substep in the first iteration for the ray-tracing process. The percentage is the ratio of the
execution time in that substep over the total execution time of the ray-tracing process in that iteration. The preprocess is allocating memory
and transferring time from central processing unit (CPU) to GPU. The substeps are divided into the distance, straight ray, ray web, and
pseudobending substep as shown in the Accelerate Ray Tracing with a GPU section. The postprocess is transferring from GPU to CPU
and releasing the memory space-time.
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original computation time and the other two processes use
only 1=30 and 1=6 of the original computation time. There-
fore, overall the entire process is accelerated 2.98 times faster
than the CPU-based implementation. In Parkfield2, the ma-
trix construction process spends only 1=6 of the original
computation time, and the other two processes use only 1=60
of the original computation time. Overall, the entire process
requires around 11=60 of the original computation time and
is accelerated 5.87 times faster than the CPU-based imple-
mentation.

However, the matrix construction is a complex calcula-
tion and a large number of branch instructions, which have
different options in sequential execution, lead to paralleliza-
tion difficulty. Hence, we need to improve the versatile
instructions for GPU-based computing to solve the current
acceleration bottleneck in the future. In addition, when han-
dling a large dataset the memory requirement for which is
over the available GPU memory, the current implementation
would require multiple passes to finish the estimation,
thereby reducing the efficiency. Therefore, our future work
will extend this single-graphics-board algorithm to a multi-
ple-graphics-board case to further accelerate the process and
reduce the need of a cluster of computers.

Conclusion

This study has shown the acceleration of the DD tomog-
raphy algorithm with a set of GPU-based schemes. They ac-
celerate the two most time-consuming steps in the algorithm:
ray tracing and least-squares inversion. All path estimations
are parallelized into available GPU cores, and the computa-
tion order depends on the length of the path to reduce the
latency of synchronization. We also achieve a reduction in
the amount of the computation required in the least-squares
inversion to further accelerate the parallelized LSQR algo-
rithm. Moreover, the usage of memory is reduced to increase

the handling size and decrease the number of passes required
to finish the estimation. At the end, the acceleration schemes
can speed up the ray-tracing process by a factor of 10.88 and
31.17 and least-squares inversion process by a factor of 2.28
and 35.46 on two datasets. When applying these acceleration
schemes, the overall acceleration is a factor of 2.98 and 5.87.
As a result, the GPU-based implementation makes the inver-
sion of a large dataset with a personal computer efficient. It
may be noted that the tested datasets are from a local scale
study but for regional or even global scale studies in which
the ray paths are much longer, the acceleration schemes
shown in this study will perform even better.
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listed in the references.
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