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A B S T R A C T

The shear wave velocity (Vs) of sediments plays a key role in seismic wave amplification and is required in site response analysis. Such information is usually lacking
during field exploration, but standard penetration test blow count (N) is typically available. Therefore, several studies have established empirical correlations
between N and Vs for engineering use. However, these empirical correlations significantly vary in terms of model form and are only applicable to specific soil types,
such as sand or clay. A unified empirical correlation for a wide range of soil types, which contains several soil properties (e.g., liquid limit and plasticity index (PI)) in
addition to the Vs and N of strata, is developed in this study using the Engineering Geological Database for the Taiwan Strong Motion Instrumentation Program.
Influences of confining stress, fines content (FC), PI, and soil types on small-strain properties (i.e., Vs) and large-strain measurements (i.e., N) are first evaluated
through the developed correlations with these parameters. The unified correlation between Vs and N that is dependent on confining stress, FC, and PI is then proposed
through the conditional prediction approach. The model successfully applies to different regions in Taiwan that includes various types of soil deposits and, thus, is
potentially used for the other regions.

1. Introduction

A key property required to effectively estimate the seismic response
of a site is small-strain shear modulus Go, which is often computed by
measuring shear wave velocity (Vs) and mass density (ρ) as follows:

Go = ρVs
2. (1)

The importance of Go has been widely recognized in site response
analysis and ground motion prediction. The site response analysis re-
quires Vs profile as input parameters [1], while the advanced ground
motion prediction equations implement site factors based on Vs of
upper 30 m [2,3]. Geophysical investigations are typically performed to
measure the Vs profile. However, these measurements are not always
common due to the additional cost of field investigation. Therefore,
correlations between Vs and standard penetration test (SPT) blow count
(N), which is conditioned on the geologic setting and soil types, are
potentially useful for the aforementioned situation.

Numerous relations between N and Vs have been established in
previous research [4-11]. However, these empirical correlations de-
veloped mainly by statistical method significantly vary in terms of
model form and are limited to a specific soil type (e.g., sand or clay) or
a specific site/region [12]. The development of these correlations also
lacks theoretical or experimental support. Therefore, this study aims to
establish a unified correlation between N and Vs that can be applied to a

wide range of soil types with an experimental and statistical basis. The
Engineering Geological Database (EGDT) for the Taiwan Strong Motion
Instrumentation Program (TSMIP) [11] is utilized in the analysis. Fac-
tors that can change the small-strain properties of Go are reviewed
based on the collected literature. Based on the previous study on la-
boratory test data, a model form that describes the small-strain prop-
erties (i.e., Vs) and the large-strain measurements (i.e., N) is proposed.
The influence of effective overburden stress ( v), fines content (FC),
plasticity index (PI), and overconsolidation ratio (OCR) on small-strain
properties and large-strain measurements is evaluated according to the
regression analysis results. A unified correlation between Vs and N that
is dependent on these parameters is then proposed through the condi-
tional prediction approach.

2. Correlation form of vs and N

2.1. Fundamental functional form of Go

The most common functional form of the relations of Go as proposed
in the literature [13] is as follows:

=G A F(e)( )o
n

0 (2)

where 0is effective confining stress, F(e) is the function of void ratio,
and constants A and n are determined by statistical regression of
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experimental results. Although Eq. (2) is typically used for estimating
small-strain Go, its form is also applicable for estimating shear modulus
G at different strain levels.

A summary by Ref. [14] indicates that n is mostly 0.5 for sand and
various types of clays at small strain level (i.e., n = 0.25 for Vs ac-
cording to Eq. (1)) based on 11 proposed models. Kishida and Tsai [12]
reported that no clear dependency of n on soil type exists based on the
analysis of field data and many previous studies, but the exponent n is
site-specific variable depending of several factors such as geologic age
and depositional environment. Ku, et al. [15] similarly concluded that
the variation of n is site-specific base on the in-situ Vs measurements.
Therefore, the soil type is not a major factor that reflects the influence
of confining stress on Vs. However, n in Eq. (2) increases according to
laboratory test data [13] from 1/3–1/2 to 1.0 as shear strain γ increases
from 10−4% to 10−2% (i.e., the exponent term of 0 changes from 1/
6–1/4 to 0.5 for Vs). The change in n indicates that confining stress
influences small- and large-strain soil properties differently. Therefore,
the exponent n is strain-dependent, which implies that small-strain
property (e.g., Vs or Go) and large-strain measurement (e.g., N) must be
modeled by confining stress differently. Consequently, confining stress

should be included when establishing the correlation between N and Vs.
Brandenburg et al. [10] also suggested the inclusion of confining stress
to derive the Vs–N correlation.

2.2. Other Factors that Influence Functional Form

Hardin [16] discussed the model form of Go for normally con-
solidated (NC) and overly consolidated (OC) clays and suggested the
following:

=G A F(e)OCR ( ) ,o
k n

0 (3)

where k can be approximated as

PIk
160

. (4)

The equation implies the following. First, for a non-plastic or low PI
soil (e.g., sand or silt), Go is independent of OCR. Second, given
OCR = 1 (NC clay), Eq. (3) yields Eq. (2) and exponent n is a constant
regardless of PI. Third, the impact of confining stress on Go is uncoupled
with OCR. Viggiani and Atkinson [17] also reported that the impact of

Fig. 1. TSMIP stations.
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Fig. 2. Vs versus N in different regions.
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confining stress on Go is uncoupled with OCR as

=G B( ) OCR .o
n m

0 (5)

However, B, n, and m are dependent on PI as revealed by laboratory
test results. Kawaguchi and Tanaka [18] proposed a semi-theoretical
form of Go based on the field data as follows:

= +OCR OCRG 20000 w 2
3

1
3

( ) ,o L v
0.8

0.2 0.5 0.6
0.8

(6)

where vis effective vertical stress, wL is the liquid limit, which is si-
milar to the role of PI in Eq. (3). Unlike Eqs. (2), (3) and (5) that are
derived using 0from the laboratory data, v is used in Eq. (6) because v
is easily obtained from the field data. Eq. (6) indicates that the effect of
OCR and PI (or wL) on Go is uncoupled unlike that in Eq. (3), where the
influence of OCR and PI on Go is coupled.

In addition to the OCR and PI, several studies found that FC can
influence the measurement of Go [19-22]. Based on the laboratory test
of specimen with non-plastic fines up to 25%, Wichtmann et al. [19]
found that higher FCs result in low Go and proposed a correct factor fr
(FC) to Go with FC other than zero. Ruan et al. [22] Performed bender
element test on saturated sand-fines mixtures with FC up to 100%. For
the mixtures in loose (Relative density, Dr = 35%) or medium dense
(Dr = 50%) condition, the Go decreases sharply and then increases
slightly with the increase of FC. However, the Go only decreases with
the increase of FC when the mixture is in dense (Dr = 60%) condition.

2.2. Proposed model form

Based on the review of previous studies, the small-strain properties are
dependent on e, σo’(or σv’), PI, OCR, and FC. σv’ is considered instead of σo’
as the model variable because it can be simply estimated from the field
data. By contrast, obtaining reliable in-situ void ratio is difficult, especially
for sands from the field borings. Thus, void ratio is not considered in the
model. The influence of these parameters can be coupled or decoupled.
Therefore, two possible regression models of Go are proposed as follows:

= + + + +FC OCRModel 1:ln(V) a a ln( ) a ln( ) a ln(PI) a ln( ),s v0 1 2 3 4 (7)

= + + +FC OCRModel 2:ln(V) a a ln( ) a ln( ) a PIln( ).s v0 1 2 3 (8)

The effect of PI and OCR on Go is uncoupled in Model 1 and coupled
in Model 2. Determining which model is superior remains unknown
because the coupling effect between PI and OCR is still under debate as
discussed earlier. An improved model based on the regression analysis
results will be suggested later. Analogically, the general model for N is
proposed as follows:

= + + + +b b FC b OCRModel 1: ln(N) b ln( ) ln( ) b ln(PI) ln( ),v0 1 2 3 4 (9)

or

= + + +FC OCRModel 2: ln(N) b b ln( ) b ln( ) b PIln( )v0 1 2 3 (10)

SPT-N generally ranges with effective overburden stresses de-
pending on soil types such as clay, silt, and sand (e.g. Ref. [10]).
However, other factors such as stress histories, soil layering, and geo-
logic age also influence on the variation of SPT-N; therefore, the var-
iation of SPT-N with overburden stress is considered as site-specific as
similar to the variation of n for Vs [12]. The correction of N due to FC as
indicated in the preceding Eq. is usually accounted for when estimating
liquefaction resistance based on N [23-25]. As discussed earlier, con-
fining stress influences small- and large-strain soil properties differ-
ently. Similarly, the influence of FC and PI on small- and large-strain
properties can be potentially different. DeJong et al. [26] found that
cementation (one factor causing OCR > 1 per Terzaghi et al. [27])
changes the small- and large-strain properties differently. Vs of ce-
mented specimens increased by a factor of 4 but converged with the
uncemented specimen at large strains under triaxial test. Therefore, the
different effects of these variables on Vs and N will be explored later.

Fig. 3. Distribution of datasets.
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3. Conditional prediction approach

Multivariable regression is typically adapted for correlating Vs and
N and other influence factors (e.g. Refs. [9,10]). However, due to the
potential of high correlation between two predictor variables (e.g., N
and σv’), which is called multicollinearity, multivariable regression may
be unsuitable for correlating Vs and N [12]. Therefore, the conditional
prediction approach proposed by Kishida and Tsai [12] is adopted in-
stead of multivariable regression in this study. In the Kishida and Tsai
approach [12], the model of N and Vs (e.g., Eqs. (7) - (10)) are first
determined through separate regression analyses. Then, the relation-
ship between Vs and N (Vs conditional on N) is established based on the
correlation of the residual in the model of N and Vs. As a simple ex-
ample, the following two regression models that only include the con-
fining stress term are used to illustrate the conditional prediction ap-
proach.

= + +N b bln ln ,v N0 1 (11)

= + +c cln V ln ,s v Vs0 1 (12)

where N and Vs are the residuals and follow the normal distributions
with mean = 0 and standard deviation of lnN and lnVs, respectively.
The correlation between N and Vs is ρNVs. Therefore, the conditional
prediction of ln Vs given lnN is theoretically expressed as follows:

= + +N NE[ln V | ln ] ln ln ,s v0 1 2 (13a)

where

= c b ,lnVs

lnN
NVs0 0 0 (13b)

= ,lnVs

lnN
NVs1 (13c)

= c b lnVs

lnN
NVs2 1 1 , (13d)

and

= (1 ).Vs N Vs NVs|
2 2 2 (14)

Based on the preceding procedure, the correlation between Vs and N
can be established through the individual correlation of Vs (or N) with
the model parameters. The conditional approach can be extended in a
similar manner when additional terms (e.g., FC, PI, and OCR in Eqs. (7)
and (9) are added to Eqs. (11) and (12)).

4. Database for regression analysis

The data provided in EGDT include stratum description, results of
soil physical property tests (such as grain size distribution, uniformity
coefficient, coefficient of gradation, void ratio, water content, specific
gravity, unit weight, liquid limit, and PI), soil classification, P- and S-
wave velocities, and SPT–N values. EGDT provides sufficient informa-
tion for the regression analysis in addition to the measurement of N and
Vs. However, the required model parameter OCR is unavailable in
EGDT. Therefore, OCR is approximately estimated by Eq. (6) in this
study given the measured Vs (or Go), wL and σv’ in the database. The

Fig. 4. Vs against model parameters in log–log space.

Table 1
Regression analysis results of Model 1.

Intercept Exponent R2 σln ρNVS

σv’ (kPa) FC (%) PI (-) OCR (-)

N (-) 0.90 0.58 −0.27 −0.37 0.40 0.50 0.61 0.32
Vs (m/s) 4.59 0.26 −0.08 −0.18 0.32 0.42 0.28
Ratio - 2.25 3.43 2.05 1.26 - - -

Table 2
Regression analysis results of Model 2.

Intercept Exponent R2 σln ρNVS

σv’ (kPa) FC (%) PI (-) OCR (-)

N (-) 1.1 0.55 −0.37 −0.00011 - 0.39 0.68 0.45
Vs (m/s) 4.63 0.25 −0.11 0.0042 - 0.33 0.38
Ratio - 2.16 3.44 −0.027 - - - -
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influence of this assumption will be explored later in the paper. Effec-
tive overburden stresses σv’ are calculated with the given depth, unit
weight, and water table elevation. Groundwater elevation is occasion-
ally not recorded for some borings. In such cases, the P-wave velocity
profile is utilized to identify the approximate elevation of the ground-
water table. An abrupt transition from P-wave velocity lower than
500 m/s to higher than 1500 m/s is typically apparent in boring logs,
clearly indicating the position of the groundwater table.

In EGDT, SPT–N is measured by an automatic hammer falling
system every 1.5 m (every 3 m to 5 m for gravel layers) or at the depth
of notable discontinuity during drilling. No energy ratio was measured
during the drilling. According to Ref. [28], based on 395 pieces of data
of 24 borings conducted in Taiwan, the energy ratio varied along the
depth in which low energy ratio was observed near the surface and high
at depth. The energy ratio is approximately 64% on average. Therefore,
the N is corrected to N60 by assuming the measured energy ratio of
64%. P- and S-wave velocities are measured with a suspension PS
logger system. Velocity measurement is generally performed every
0.5 m, except for several drillings in the first and second years, in which
velocity is measured every 1 m.

The boring ID is similar to the codes of the TSMIP stations that were
assigned according to the abbreviations of the different regions of
Taiwan Island, which are TAP, TCU, CHY, KAU, TTN, HWA, and ILA, as
shown in Fig. 1. Notably, these regions are not categorized by its geo-
logical unit but simply based on the province. In addition, Vs–N dis-
tributions vary in different regions as shown in Fig. 2. The data from
TAP, TCU, CHY, HWA, and ILA are used for regression analysis, and the

remaining data (KAU and TTN in the southern region of Taiwan) are
employed to verify the model. SPT blow counts that exceed approxi-
mately 50 correspond to a refusal condition. Therefore, we excluded the
data of N larger than 50 in the database. Furthermore, for non-plastic
soil, PI is set as a unity; for soil without FC, FC is also set as a unity. A
total of 3,684 data sets from 334 sites that include Vs, N, σv’, FC, PI, and
estimated OCR are used for the regression analysis. As shown in Fig. 2,
there are some data points with very high Vs but very low N due to
inherent errors in the database. Because it is difficult to eliminate these
data based on the judgement, all points are used in the regression
analysis. Since these erroneous data are few, its influence on the re-
gression results is minor. The distribution of data is shown in Fig. 3. The
Vs mostly distribute between 150–400 m/s with mean of 258 m/s; the N
mostly distributes between 1–30 with mean of 12.6; the σv’ is mostly
less than 300 kPa with mean of 167 kPa; the OCR is mostly less than 3
with mean of 1.6; the PI is mostly less than 5 with mean of 2.6; the FC
evenly distributes between 0% and 100% with mean of 40.7%. The
estimated OCR is high near the ground surface and decreases with the
depth, which is consistent with the typical trend of field observation
[27]. The evenly distributed FC indicates uniformly distributed soil type
in the database, which is excellent for developing a unified model. The
database consists of clay (29%), silt (21%), sand (47%), and gravel
(3%).

Fig. 4 shows the Vs against the model parameters. Vs is approxi-
mately linear against the model parameters in log–log space, which
indicates that modeling Vs by Eqs. (7)–(8) is sufficient prior to the
performance of regression analysis.

Fig. 5. Residual of N prediction based on Eq. (9).
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5. Regression analysis results

5.1. Overall results

Table 1 and Table 2 summarize the regression result of Models 1 and
2, respectively. The efficiency of the models is usually evaluated based
on the obtained correlation relationship (R2) and standard deviation
(σln) in the regression analysis. A model with high R2 and low σln

equates to superior performance. Based on this finding, Model 2 is not
as satisfactory as Model 1 because a high σln is obtained. In addition,
the model coefficients for N and Vs in Model 2 are inconsistent. Spe-
cifically, the coefficient of PI term is positive for Vs but negative for N.
The negative coefficient indicates a high OCR result in low N, which is
different from that of stiff clay, which typically has a high blow count.
The inconsistent results indicate the possible unsuitability of Model 2.
Therefore, Mode 1 is adopted and discussed hereafter.

Fig. 5 and Fig. 6 show the residuals of N and Vs of Model 1, re-
spectively. Overall, the models do not demonstrate the bias to all the
model variables, indicating the adequacy of the model form. The only
bias is exhibited at the confining stress (or the shallow depth) where the
mean residual is positive (i.e., underestimated). This bias is the inherent
limit of the model that describes the Vs or N as a constant exponential of
σv’. The predicted Vs or N rapidly decreases and reaches zero as they
approach the ground surface, while the measured Vs or N still presents
certain values. By contrast, the residual of N exhibits a larger scatter
than that of Vs, and even the mean of N is much smaller than that of Vs

(i.e. coefficient of variance of N is higher than that of Vs). This ob-
servation is consistent with the generally known idea that N

measurement involves additional uncertainty (e.g., method, labor, and
energy ratio), thus potentially exhibiting a high variation.

5.2. Difference of small- and large-strain behavior

The difference of physical and mechanical responses of Vs and N can
be observed by comparing the regression analysis results of Eqs. (7) and
(9). The Vs is connected with small-strain responses whereas the N is
more associated with large-strain ones. Table 1 shows that the exponent
terms of σv’ and OCR are positive, whereas those of FC and PI are ne-
gative for N and Vs, respectively. Therefore, these variables exhibit si-
milar influence on small-strain properties and large-strain measure-
ments. The positive values indicate that N and Vs increase with OCR
and σv’, and the negative values indicate that both properties decrease
as FC and PI increase. These trends are consistent with the previous
study of Go observed from the lab tests [14,16,18,19]. However, the
value of the exponent term is different for N and Vs. The exponent term
of σv’ for Vs (small-strain property) is approximately 0.25, whereas that
for N (large-strain measurement) is approximately 0.5, which are both
consistent with the values suggested by Refs. [14,29] for Vs and N,
respectively.

Different values of predictor variables represent varying degrees of
influence on N and Vs. High absolute value indicates a considerable
influence on N or Vs. Therefore, the relative influence of these variables
on large- and small-strain behavior can be quantified by the ratio of
coefficients between N and Vs, in which the highest value implies the
largest effect on N relative to the effect on Vs. Based on this under-
standing, the influence of FC is largest on N relative to Vs, followed by

Fig. 6. Residual of Vs prediction based on Eq. (7).

C.-C. Tsai, et al. Soil Dynamics and Earthquake Engineering 126 (2019) 105783

7



σv’, PI, and OCR as shown in Table 1. Such difference should be con-
sidered when developing the correlation between N and Vs. With σv’ as
an example, the obtained exponent ratio is approximately 2, which is
similar to that reported by Ref. [10]. Therefore, if Vs is correlated to N,
then the influence of σv’ is not negligible. In other words, the prediction
model of Vs based on N should also include the σv’ term, as suggested by

Ref. [10]. Similarly, FC and PI should also be included in the model
mainly due to their different influences on small- and large-strain be-
havior, respectively. Only the ratio of OCR is approximately 1. Thus,
the prediction model of Vs based on N can possibly exclude the OCR
term if the product of Vs

N
and NVsis approximately 1 according to Eq.

(14d).

5.3. Influence of FC

The developed correlation between N and FC and Vs and FC can also
be utilized to evaluate the influence of FC on Vs and N. The coefficient
of FC for N is higher than that for Vs, indicating that FC has more in-
fluence on N than Vs. In the liquefaction potential analysis, N and Vs

require further correction to estimate the liquefaction resistance of soil
containing certain amounts of fines. Corrected (or equivalent) N or Vs is
typically higher than the measured N or Vs for soil with certain FC. The
negative coefficient of FC obtained in this study is consistent with the
concept of correction for FC in the liquefaction analysis. We also
quantitatively compared FC correction from our regression analysis
with that proposed by previous studies. Fig. 7(a) shows a comparison of
FC-corrected N (Ncs) by Refs. [23,24], and [25] for various FCs with
given measurements of N = 5, 10, 15. Ncs in this study is calculated as
follows:

Ncs = N / FC−0.27. (15)

The above equation is derived based on Model 1 (Eq. (9)) and the
obtained regression coefficient b2 in Table 1. Notably, Eq. (15) is only
applicable to the condition of N < 15 for all FCs or all N for FC < 30%
based on the database distribution. Given measurements of N = 5 and
10, the Ncs in this study is in the range of the Ncs obtained by the other
studies. For N = 15, the Ncs in this study is slightly larger than that
suggested by others. The previous studies mostly consider N correction
with FC up to 35%. By contrast, the result of this study indicates that N
may be further influenced by a high FC. Such influence is considered
mechanical correction during the SPT measurement and may not be
necessary for the correction of liquefaction resistance.

We also compared FC-corrected Vs (Vs,cs) in this study with that
corrected by Ref. [30] for various FCs and three given measurements of
Vs. Vs,cs in this study is calculated as follows:

Vs,cs = Vs / FC−0.08. (16)

The above equation was derived based on Model 1 (Eq. (7)) and the
obtained regression coefficient a2 in Table 1. As shown in Fig. 8, the
Vs,cs in this study is slightly higher than that in Ref. [30] for low
measured Vs but agrees well with that in Ref. [30] for measured
Vs = 250 m/s. Similar to the influence of FC on N, Vs may be further
corrected for a higher FC, as indicated by our regression model com-
pared to Ref. [30] that is only applied for FC < 35% in. The decreasing
trend of Vs with FC > 35% is consistent with the behavior of the dense
sand-fines mixtures reported by Ref. [22] but different from that of the
loose to medium mixtures. Void ratio or relative density also influences
the dependency of Vs on FC. Since the proposed model is based on the
field data that covers a wide range of soils with different void ratios,
relative densities, and properties of fines, the obtained result may re-
present an “apparent” behavior compared to that in the laboratory for a
specified condition (i.e. non-plastic fines and a constant void ratio or
relative density). The correction of Vs due to high FC for different
conditions needs to be further clarified by the laboratory test.

5.4. Unified vs prediction model

A unified empirical model is developed according to the previously
described conditional prediction procedure (Eqs. (11) to (14)). Given
the regression result of Eqs. (7) and (9) as listed in Table 1, the pro-
posed model is,

Fig. 7. Comparison of corrected N for various FCs with given measurements of
N = 5, 10, and 15.

Fig. 8. Comparison of corrected Vs for various FCs with given measurements of
Vs (at FC = 0%) = 150, 200, and 250 m/s.
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= + + +FClnV 4.46 0.15lnN 0.17ln 0.04ln 0.12lnPI 0.26lnOCRs v60

(17)

R2 is 0.45 and the standard deviation of σln is 0.26, which is ap-
proximated as σ = 63 m/s given mean Vs = 270 m/s. The residual of Vs

prediction condition on N is shown in Fig. 9. Overall, the models do not
show a clear bias to the model variables, indicating the adequacy of the
model form. Moreover, the biases shown at the low confining stress in
Figs. 5 and 6 are not observed in Fig. 9. This finding can be attributed to
the conditioning of Vs on N, in which the preceding bias mentioned is

automatically corrected through Eq. (13d) by including the correction
of residual of Eqs. (7) and (9). Fig. 9(f) also presents the residual against
the gravel content in addition to that of FC in Fig. 9(d). The absence of
bias to gravel content and FC indicates that the model can be applied
for a wide range of soil types, including gravel, sand, silt, and clay.
However, given that the database only has 3% of gravel, the applic-
ability of the model to gravel requires further evaluation.

In Ref. [11], the dataset similar to that used in the present study was
grouped into clay and sand for regression analysis, and the obtained σ
of the individual Vs–N model were 67 m/s and 77 m/s. Although we

Fig. 9. Residual of Vs prediction based on Eq. (17).
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Fig. 10. Residual of Vs prediction using KAU and TTN data.
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used the entire dataset in the regression analysis, the standard deviation
obtained in the present study is lower than that reported by Ref. [11].
The model that includes additional prediction parameters, such as FC
and PI, considerably improve the prediction accuracy. The model can
be applied to general conditions for estimating Vs by N and is not
limited to a specific soil type.

Considering that OCR is not directly provided in the database and
indirectly estimated, we also evaluate the model performance if OCR is
excluded from the model. The result shows that removing OCR from the
model has a limited effect because σ is slightly increased from 63 m/s to
68 m/s given mean Vs = 270 m/s. The model based on σv’, FC, and PI
can sufficiently predict Vs, and even OCR is typically unavailable in
practice. This result may be mainly due to the similarity of the OCR
influence on small- and large-strain properties as discussed earlier.
Therefore, the following equation can be adopted if OCR is unavailable:

= + + +FClnV 4.52 0.22lnN 0.11ln 0.03ln 0.02lnPIs v60 (18)

R2 is 0.35 and σln is 0.29. If the model form only includes σv’ as
typically modeled by others (e.g. Ref. [10], then σ becomes high
(Vs = 94 m/s). Nevertheless, σ is still lower than the value of approxi-
mately 103 m/s obtained by Ref. [11] for the entire dataset. This im-
provement may be attributed to the conditional prediction approach
adopted in this study and the use of σv'instead of depth in the model.

6. Verification

The data of KAU and TTN (683 datasets) in the southern region of
Taiwan are used to verify the proposed model. The standard deviation
of the prediction σln is 0.26, which is similar to that obtained by re-
gression analysis. However, the mean residual is 0.058, which is
slightly larger than zero. The small positive value indicates a slight
underestimation of Vs (approximately 10 m/s given mean Vs = 270 m/
s) but is acceptable compared with the magnitude of σln. Fig. 10 shows
the residual against different variables. Once more, the models do not
reveal the clear bias to the model variables.

Kuo et al. [11] proposed 12 different models to predict Vs for dif-
ferent soil types and regions. By contrast, this study only used one
unified model to successfully predict all soil types in different regions.
In addition, the prediction accuracy is further improved in terms of low
σln. Fig. 11 shows the Vs prediction for different regions given
σv’ = 300 kPa and mean of FC, OCR, and PI by the regions. Similar to
the results reported by Ref. [11], TCU, TTN, and HWA exhibit higher Vs

than other regions. This condition can be attributed to low FC or high

gravel content as measured in these regions. However, the proposed
correlations do not include gravel contents as a parameter. In addition,
the analyzed dataset excluded the data with N > 50. Therefore, this
study cannot measure the influence of gravel contents on the resulted
correlations. Overall, the proposed unified model effectively captures
the variation of Vs in the different regions by accounting for the re-
gional feature of soil properties.

7. Conclusions

Numerous relations between N and Vs have been proposed for
practical purposes in earthquake engineering. However, these empirical
correlations significantly vary in terms of model form and parameters.
Without a theoretical or experimental basis, these correlations are only
developed by statistical method and for a specific site and soil type. Vs

and N are typically considered small- and large-strain properties, re-
spectively. Such difference should be considered in the development of
the model to correlate N and Vs. Therefore, a unified empirical corre-
lation model was established in this study using a conditional predic-
tion approach to correlate small- and large-strain properties based on
EGDT with 3684 datasets.

The main factors that can change the small-strain property include
σo’ (or σv’), FC, PI, and OCR according to a previous study on laboratory
test data. Therefore, we developed a simple model form that includes
these parameters to estimate small-strain property and applied it to
large-strain measurement similarly. The influence of these parameters
on small-strain properties (i.e., Vs) and large-strain measurements (i.e.,
N) was discussed according to the regression result. Different exponent
values of predictor variables stand for varying degrees of influence by
these parameters on large- and small-strain properties. As indicated by
the ratio of coefficients between N and Vs, FC influences N and Vs most
differently, followed by σv’, PI, and OCR. The coefficient ratio for σv’
between N and Vs is approximately 2, which is consistent with that in
previous studies. In addition, the influence on N and Vs by FC based on
the regression result agrees well with the fine correction recommended
in the liquefaction potential analysis.

Last, a unified correlation model between Vs and N that is depen-
dent on σv’, FC, PI, and OCR was established through a conditional
prediction approach. The model, which included additional prediction
parameters, such as FC, OCR, and PI, successfully predicted the Vs of a
wide range of soil types in the different regions of Taiwan and exhibited
a high variation of Vs. The proposed model can be applied to general
conditions (i.e. the other regions in Taiwan) and is not limited to a
specific soil type. However, the user should employ the model for gravel
with caution due to the relatively small amount of data utilized in
model development.
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