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Abstract
We propose a methodology to implement horizontal-to-vertical Fourier spectral
ratios (HVRs) evaluated from strong ground motion induced by earthquake (EHVRs)
or ambient ground motion observed from microtremor (MHVRs) individually and
simultaneously with the spatial correlation (SC) in a ground-motion prediction equa-
tion (GMPE) to improve the prediction accuracy of site effects. We illustrated the
methodology by developing an EHVRs-SC-based model which supplements Vs30 and
Z1.0 with the SC and EHVRs collected at strong motion stations, and a MHVRs-SC-
based model that supplements Vs30 and Z1.0 with the SC and MHVRs observed
from microtremors at sites which were collocated with strong motion stations. The
standard deviation of the station-specific residuals can be reduced by up to 90%
when the proposed models are used to predict site effects. In the proposed models,
the spatial distribution of the predicted station terms for peak ground acceleration
(PGA) from MHVRs at 3699 sites is consistent with that of the predicted station
terms for PGA from EHVRs at 721 strong motion stations. Prediction accuracy for
stations with inferred Vs30 is similar to that of stations with measured Vs30 with
the proposed models. This study provides a methodology to simultaneously imple-
ment SC and EHVRs, or SC and MHVRs in a GMPE to improve the prediction accu-
racy of site effects for a target site with available EHVRs or MHVRs information.
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Introduction

Most ground-motion prediction equations (GMPEs) use average shear-wave velocity to
30 m layers (Vs30) and depth to shear-wave velocity to 1 or 2.5 km/s (Z1.0 or Z2.5) as
predictor variables to quantify site effects. However, the standard deviation of the station-
specific residuals representing the site-to-site variability of ground-motion intensity
remains substantial when these GMPEs are used to predict the site effects. For example,
the standard deviation of the GMPE developed for Taiwan (Chao et al., 2019a, 2020)
ranges from 0.35 to 0.5. Many studies have demonstrated that the variability of ground-
motion intensity, which removes site-to-site variability, can be significantly reduced (Al-
Atik et al., 2010; Chen and Tsai, 2002; Lin et al., 2011; Morikawa et al., 2008; Rodriguez-
Marek et al., 2013). This is one reason that those involved in site-specific projects often
evaluate hazard curves for a reference rock site condition using the single-station sigma,
which removes site-to-site variability, when conducting site-specific site response analysis
to derive the site-specific site amplification regarding reference rock site condition
(GeoPentech, 2015; National Center for Research on Earthquake Engineering (NCREE),
2015; Rodriguez-Marek et al., 2014). This indicates that site effect characteristics cannot
be fully represented by the site parameters Vs30 and Z1.0.

Various studies have illustrated that horizontal-to-vertical Fourier spectral ratios
(HVRs) evaluated using either strong ground motion induced by earthquake (EHVRs) or
ambient ground motion observed using microtremor (MHVRs) can be used to classify the
condition of a target site (Kuo et al., 2015; Nakamura, 2019; Yamazaki and Ansary, 1997)
and to represent site amplification characteristics (Kuo et al., 2018; Lermo et al., 1993).
When the Vs30 and Z1.0 parameters observed through borehole drilling or noninvasive
geophysical measurements are compared, EHVRs and MHVRs are more easily derived.
Some researchers have used HVRs to quantify the site effects of observed ground motion
(Chao et al., 2019b; Hassani and Atkinson, 2016, 2017a, 2017b; Kwak et al., 2017). In
these studies, researchers extracted several predictor variables from the observed HVRs to
quantify the site effects of observed spectral acceleration of ground motion (e.g. the peak
frequency of the HVRs, HVRs at certain frequencies, and shape of the HVRs), but the
reduction of aleatory uncertainty and improvement of prediction accuracy remained lim-
ited. Furthermore, the methodology for applying the HVRs in GMPEs for site effect pre-
diction has not been widely discussed.

Numerous studies have revealed the spatial correlation (SC) of ground-motion intensity
(Goda and Hong, 2008; Jayaram and Baker, 2009; Kawakami and Sharma, 1999 ;
Sokolov et al., 2010; Wang and Takada, 2005). Several have used the SC of ground-
motion intensity to develop nonergodic GMPEs (Kuehn and Abrahamson, 2019; Kuehn
and Scherbaum, 2016; Landwehr et al., 2016) and apply them to probabilistic seismic
hazard analysis (Abrahamson et al., 2019). They have demonstrated that the aleatory
uncertainty of ground motion can be significantly reduced using a nonergodic GMPE,
and prediction accuracy can be improved. However, with the application of a nonergodic
GMPE, epistemic uncertainty may increase and require additional attention. The idea
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underlying the development of these nonergodic GMPEs is that one random variable can
be better estimated from the observed values of the other one random variable through a
nonparametric modeling approach when these two random variables are correlated.
Similar idea was used to develop the conditional mean spectrum (Baker, 2011), in which
the known spectral acceleration of a particular period is used to estimate the spectral
accelerations of other periods through the correlation between the spectral accelerations
of the periods (Baker and Cornell, 2006; Baker and Jayaram, 2008; Jaimes and Candia,
2019; Jayaram et al., 2011).

Because site characteristics can be appropriately represented by the HVRs, in this study,
we attempted to apply the HVRs of a wide-frequency range as a vectorized predictor vari-
able in a GMPE to predict site effects using the concept of the correlation, which is similar
to the development of a nonergodic GMPE. The EHVRs available at strong motion sta-
tions and the MHVRs available at several sites in Taiwan were first compiled. Then, a
methodology was proposed to implement the HVRs and SC simultaneously in a GMPE.
An EHVRs-SC-based model and a MHVRs-SC-based model were proposed to quantify
the site effect of ground motion using the results of a Taiwan GMPE proposed by Chao
et al. (2019a, 2020), referred to here as the NCREE19 GMPE and the compiled EHVRs
and MHVRs observed at stations and sites in Taiwan. We illustrated the performance of
the proposed models by comparing the standard deviation of the station-specific residuals,
the spatial distribution of the predicted station terms, and the predicted spectral accelera-
tions of two stations with similar Vs30 values but different HVRs for a particular ground-
motion scenario. The prediction accuracy of the proposed models for stations with inferred
Vs30 and measured Vs30 was also compared. The results indicate the prediction accuracy
of the site effect for a target site with available EHVRs or MHVRs can be substantially
improved using the proposed EHVRs-SC-based and MHVRs-SC-based models regardless
of how the Vs30 value of the target site is derived.

Uncertainty was present in the observed EHVRs and MHVRs of each station as well as
in other predictors (e.g. magnitude, depth, and Vs30). However, the methodology of trans-
lating this uncertainty into that of the predicted site terms was not considered in this study.
Several studies (Dellaportas and Stephens, 1995; Girard et al., 2003; Iba and Akaho, 2010;
Rasmussen and Williams, 2006) may provide guidance in addressing this problem.

HVRs observed in Taiwan

Seismic motion data

EHVRs were evaluated using the seismic motion records of earthquakes collected in strong
motion stations in Taiwan (Liu et al., 1999; Shin et al., 2013). The procedure for determin-
ing the EHVRs from strong ground-motion records is summarized as follows:

1. Only ground-motion records with a maximum of 3-axis peak ground accelerations
(PGA) smaller than 80 gal were selected to avoid the nonlinear site effect influen-
cing the observation of the EHVRs.

2. Only ground-motion records with clear S-wave and P-wave arrival times that were
manually picked were selected. A clear P-wave arrival time can help us confirm the
existence of the S-wave. Ground-motion records with low signal-to-noise ratios and
low data quality were excluded through this approach.
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3. The window of ground motion in 3-axes time histories after S-waves arrived for
each record was extracted. If the end of the ground-motion window was difficult
to identify, the delay time between S-wave and P-wave arrival times multiplied by
3 was the assumed length of the ground-motion window.

4. Fourier amplitudes of 3-axes time histories for each ground-motion window were
calculated using 8192-point fast Fourier transform. If the number of data points of
a ground-motion window were fewer than 8192, additional data points with values
of 0 were added. If a ground-motion window had more than 8192 data points, only
the front 8192 data points were used to calculate its Fourier amplitude.

5. The vector sum of Fourier amplitudes in two horizontal components (east–west
and north–south directions) were calculated as the horizontal Fourier amplitudes,
then the ratio of horizontal and vertical Fourier amplitudes was calculated to be
the HVRs for the ground-motion record.

6. The geometric mean of the EHVRs of each ground-motion record collected at the
same station was calculated to be the EHVRs of that station. Only stations with at
least five available ground-motion records were selected for EHVRs evaluation.

The sampling rate of the ground-motion records that were used to calculate the EHVRs
was 200 Hz. Furthermore, 8192 points (40.92 s window length) were used to determine
EHVRs because doing so entails using the same window length as the MHVRs, which pro-
motes consistency. The window lengths were shorter than 40.92 s for most of the used seis-
mic motion data. Most energy from the ground motion was contained in the beginning of
40.92 s, even for the used seismic motion data with a longer ground-motion window
length. Thus, we use a ground-motion window of 8192 points to determine the EHVRs.

A total of 721 strong motion stations with available EHVRs information are included,
and all have Vs30 and Z1.0 information available (Kuo et al., 2017). All EHVRs of each
station were resampled from 0.1 to 30 Hz with an equal spacing of 0.02 Hz to improve
computational efficiency. The frequency range of 0.1–30 Hz was selected because the
variability of the observed EHVRs is stable in this range. As a result, a total of 1496 values
of EHVRs were available to act as a vectorized predictor variable for each station.
Figure 1a demonstrates the spatial distribution of the 721 stations with available EHVRs.
The stations are color-coded based on their Vs30 values. Figure 2a portrays the individual
EHVRs of each station and the geometric mean of the EHVRs for different Vs30 bins.
The predominant frequency corresponding to the highest geometric mean of EHVRs
increases as Vs30 increases (Ghofrani and Atkinson, 2014; Hassani and Atkinson, 2016),
and the difference of EHVRs for different Vs30 bins is most significant for frequencies
between 0.5 and 5 Hz. Most EHVRs values range from 0.5 to 10.

Ambient motion data

MHVRs are evaluated using the ambient motion data collected through microtremor
measurement at 3699 sites in Taiwan (Wen and Huang, 2012). The instruments used to
perform the measurements are the three-component velocity-type seismometer VSE-311C
(or VSE-315D) and the digital recorder SAMTAC-801B. The measurement duration at
each site is approximately 18 min, with a sampling frequency of 200 Hz. The sites are
spaced approximately 1–2 km apart in each sub-region in Taiwan. Their locations were all
carefully chosen to avoid artificial vibrations and effects from underground construction.
In the analyses of the MHVRs, the three-component waveforms of ambient motion data
were divided by parting them in moving windows with a length of 8192 points (40.96 s)
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without overlap. The windows that contained obvious abnormal transient signals that
were identified through visual inspection, which may contaminate the results, were elimi-
nated. Fast Fourier transform was conducted for each component to derive Fourier
amplitudes for them. One horizontal Fourier amplitude was derived as the root mean
square of the Fourier amplitudes of two horizontal components and was divided by the
vertical Fourier amplitude to attain the MHVRs of each window. The MHVRs of each
station is the arithmetic mean of the MHVRs of at least 20 windows.

A total of 3699 sites in Taiwan with available MHVRs were included in this study, and
most of them do not have Vs30 or Z1.0 information available. As with the EHVRs, the
MHVRs of each site were resampled from 0.1 to 30 Hz with an equal spacing of 0.02 Hz
to improve computational efficiency. The range 0.1–30 Hz is selected because MHVRs
variability is stable in this range. A total of 1496 values of MHVRs at different frequency
points are available to act as a vectorized predictor variable for each site. Figure 1b shows
the spatial distribution of all 3699 sites with available MHVRs. Figure 2a displays the indi-
vidual MHVRs of each site and geometric mean of MHVRs. The range of MHVRs values
is wider than that for EHVRs values. In all, 117 sites have corresponding strong motion
stations located within 200 m of the site. We assumed that they were collocated with strong
motion stations. It is a reasonable assumption which is necessary for the application of
MHVRs in this study. Variability in the MHVRs may be observed in the 200 m range, but
we expect this to be non-significant. The locations of these sites are represented in Figure
1b as red markers. Their MHVRs are depicted in Figure 2a as green lines.

(a) (b)

Figure 1. (a) Spatial distribution of stations with available EHVRs. The stations are color-coded based
on their Vs30 values. (b) Spatial distribution of sites with available MHVRs. The red markers identify 117
sites which are collocated with stations with available EHVRs.
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Site effect of ground motion in Taiwan

The station term derived from a Taiwan GMPE proposed by Chao et al. (2019a, 2020),
NCREE19 GMPE, was used to quantify the linear site effect of Taiwan ground motion in
this study. This section summarizes the procedure for deriving the station term of each sta-
tion from regression analysis of the GMPE. The NCREE19 GMPE comprises the pre-
dicted reference ground-motion intensity for the reference ground-motion scenario, and
the scaling relationships describing the difference in ground-motion intensity between the
target and reference scenarios are as follows

ln Sa = lnSref
a + Ssource + Spath + Ssite, lin + Ssite, non + de + ds + dr ð1Þ

Figure 2. (a) Individual EHVRs of all stations and averaged EHVRs for different Vs30 bins. (b) Individual
MHVRs of all sites and averaged MHVRs.
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where lnSa is the log value of the observed spectral acceleration (in g), lnSref
a is the log

value of the predicted median reference spectral acceleration for the reference ground-
motion scenario (in g), Ssource is the source scaling that describes the source effect on the
median ground-motion intensity, and Spath is the path scaling that describes the path effect
on the median ground-motion intensity. Furthermore, Ssite, lin and Ssite, non are linear and
nonlinear site effects on the median ground-motion intensity, respectively, and de, ds, and
dr are event-, station-, and record-specific residuals, respectively.

The source, path scaling, linear and nonlinear site scaling, and model coefficients of the
NCREE19 GMPE are determined using the revised two-step maximum-likelihood method
(Chao and Chen, 2019; Joyner and Boore, 1993). In the first step, the functional form of
the proposed ground-motion model is rearranged as follows

ln Sa = Spath + Ssite, non + Ee + Ss + dr ð2Þ

where Ee and Ss are the event term of each event and the station term of each station,
respectively. This step can determine the predictions of the event term Ee and station term
Ss, model coefficients relating to the path scaling term Spath, nonlinear site effect term
Ssite, non, and for each record, the record-specific residual together with its standard devia-
tion. In the second step, the predictions of the event and station terms are used to deter-
mine other model coefficients as follows

Ee = Eref + Ssource + de + dEe
ð3Þ

and

Ss = Sref + Ssite, lin + ds + dSs
ð4Þ

where Eref and Sref are constants representing the event and station terms for the reference
ground-motion scenario, respectively, and dEe

and dSs
are the errors of the predicted event

and station terms, respectively. In this step, the predictions of the event and station terms
for the reference ground-motion scenario (Eref and Sref , respectively) and the model coeffi-
cients related to the source scaling, linear site scaling, and event-specific residual (with its
standard deviation) of each event as well as the station-specific residual (and its standard
deviation) for each station can be determined. Finally, the spectral acceleration of the ref-
erence ground-motion scenario can be derived as follows

lnSref
a = Eref + Sref ð5Þ

In this study, we attempted to apply HVRs and SC to improve the prediction of Ss for
the linear site effect. Nonlinear site effects were not considered in this study. The linear site
effect on ground-motion intensity was predicted using only two predictor variables, Vs30
(in unit m/s) and Z1.0 (in unit m), in the NCREE19 GMPE as follows

Ssite, lin = c24 ln
Vs30

V
ref
s30

 !
+ c25 ln

Z1:0

Z
ref
1:0

 !
ð6Þ

where
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Z
ref
1:0 = exp

�4:08

2
ln

V 2
S30 + 355:42

17502 + 355:42

� �� �
ð7Þ

where c24 and c25 are model coefficients relating to linear site effects. The magnitude-distance
distribution of the selected data in NCREE19 GMPE at PGA is shown in Figure 3a. Station
numbers in different Vs30 bins used in NCREE19 GMPE at PGA is shown in Figure 3b.
The Vs30 of most stations ranges from 200 to 300 m/s and from 400 to 600 m/s.

In summary, the linear site effect on ground-motion intensity can be quantified using
the station term Ss of each station. A higher Ss value represents higher site amplification.
The methodology for applying HVRs and SC in a GMPE to improve the prediction of the

(a)

(b)

Figure 3. (a) Magnitude–distance pairs of used ground-motion records in NCREE19 GMPE at PGA. (b)
Station numbers in different Vs30 bins used in NCREE19 GMPE at PGA.
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station term Ss is introduced in the next section. Some factors that may also influence the
linear site amplification such as different earthquake source types, travel paths, angles of
incidence, magnitudes, and distances of scenarios (Stafford et al., 2017), have not been con-
sidered in evaluations of the station terms Ss. The proposed methodology and models may
derive a biased prediction, while the dependence of the site amplification on these factors is
significant for a target site.

Methodology for applying HVRs and SC

This section describes the proposed methodology for implementing the HVRs and SC to
predict the station terms during the development of the GMPE. The proposed methodol-
ogy was developed based on the framework of two-step maximum-likelihood regression
analysis (Chao and Chen, 2019; Joyner and Boore, 1993). All symbols used in this study
follow those used in the study of Chao and Chen.

In step 2 of the revised two-step maximum-likelihood method, the station term vector
Ss, comprising the station term of each station, and its hessian matrixHSs

, obtained in step
1, are used to solve model coefficients relating to linear site scaling. We improved the meth-
odology by implementing the HVRs and SC to predict the station term vector. The model
equation in step 2 (Chao and Chen, 2019) can be expressed as

Ss =Xscs + ds2 =Xscs + ds + dSs
ð8Þ

where Ss is a vector comprising the station term of each station, Xs is a matrix correspond-
ing to the station-specific term of the median model, cs is a vector comprising model coeffi-
cients of the station-specific terms of the median model related to linear site effect as Sref ,
c24, and c25 in the NCREE19 GMPE, and ds2 is the residual term vector involving station-
specific residual vector ds, comprising the station-specific residual of each station as well as
the prediction error of station term vector dSs

derived in step 1, which comprises the predic-
tion error of the station term of each station. The covariance matrix of the residual term
ds2 can be expressed as

Vs2 =Vs +H�1
Ss

ð9Þ

where Vs is the covariance matrix of ds, and HSs
is the hessian matrix of Ss which is equal

to the hessian matrix of dSs
(Joyner and Boore, 1993); Vs2 are full-matrices representing

that the residual terms of each station are correlated with each other. As a result, the least-
squares error method cannot be used to derive accurate results. In this case, the maximum-
likelihood method should be used to derive unbiased results. If we assume that all residual
terms are zero-mean normal random variables, the likelihood function of the equation can
be expressed as

lnLs = � 0:5ns ln 2pð Þ � 0:5ln Vs2j jð Þ � 0:5 Ss � Xscsð ÞTHs2 Ss � Xscsð Þ ð10Þ

where Ls is the likelihood value of the equation, and the hessian matrix Hs2 can be
expressed as

Hs2 =HSs
� I+HSs

Vsð Þ�1HSs
VsHSs

ð11Þ
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where I is the identity matrix. The log values of jVs2j can be calculated as

ln Vs2j jð Þ= ln Vs +H�1
Ss

� ���� ���� �
= ln H�1

Ss
HSs

Vs + Ið Þ
�� ��� �

= � ln HSs
j jð Þ+ ln HSs

Vs + Ij jð Þ
ð12Þ

The model coefficients related to linear site effects can be derived such that they maxi-
mize the likelihood values with known matrix Ss andHSs

derived in step 1. If a large matrix
must be inverted when data sets are large, some studies (Bauer et al., 2016; Rasmussen and
Williams, 2006) have provided guidance regarding how to do so.

In the NCREE19 GMPE, the station-specific residuals of each station are assumed to
be uncorrelated and have a diagonal covariance matrix. In this study, both the HVRs and
SC were implemented to predict the station term by revising the covariance matrix of the
station-specific residual. We illustrated this by developing four different models with four
covariance matrices as follows

Model 0 :Vs = fs2s
2I ð13Þ

Model 1 :Vs = ff 1
2 exp �a1

2DHVR

� �
+ fn1

2I ð14Þ

Model 2 :Vs = ff 2
2 exp �a2

2Dts

� �
+ fn2

2I ð15Þ

Model 3 :Vs = a1ff 1
2 exp �a1

2DHVR

� �
+ a2ff 2

2 exp �a2
2Dts

� �
+ fn3

2I ð16Þ

with the following constraints

fs2s
2 = ff 1

2 + fn1
2 = ff 2

2 + fn2
2 = a1ff 1

2 + a2ff 2
2 + fn3

2 ð17Þ

The setup of Model 0 is identical to that of NCREE19 GMPE and assumes that the
station-specific residuals of each station are uncorrelated with themselves. Model 1
assumes that the station terms between two stations are highly correlated when their
HVRs are similar. Model 2 assumes that the station terms of two stations are highly corre-
lated when they are nearby. Model 3 assumes that the correlation of the station terms
between two stations depends not only on their spatial distance but also the similarity of
their HVRs. Model coefficients ff 1 and a1 quantify the correlation as a function of HVRs
difference between two stations; model coefficients ff 2 and a2 quantify the SC as a func-
tion of the distance between two stations; a1 and a2 quantify the contribution of the corre-
lation matrices from the HVRs and SC; model coefficients fs2s, 0, fn1, fn2, and fn3 are the
standard deviations for the residuals uncorrelated with each other which are contributed
by noise; Dts is a matrix describing the spatial distance between each station, and its ele-
ment at ith row and jth column represents the spatial distance between ith and jth stations
in kilometers; DHVR is a matrix describing the difference of HVRs between each station,
and its element can be expressed as

DHVR, ij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnf

k = 1

ln(HVRi, k)� ln(HVRj, k)

 �2

nf

vuuut
ð18Þ
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where DHVR, ij is the element of matrix DHVR at ith row and jth column describing the dif-
ference of the HVRs between the ith and jth stations; nf is the total number of frequency
points of the HVRs; HVRi, k and HVRj, k are HVR at kth frequency at ith and jth stations,
respectively. In the next section, we illustrate the correlation of station terms with respect
to spatial distance and similarity of HVRs using semivariograms. The constraints were
defined to ensure the consistency of total site-to-site variability between each model.

The methodology for simultaneously implementing the HVRs and SC in a GMPE has
been introduced. All model coefficients can be determined through finding their values
which maximize the likelihood function with the constraints. The proposed methodology
can account for the difference of the prediction errors of the station term Ss among stations
due to different numbers of available ground-motion records among stations being used in
the regression analysis. When applying the developed models to conduct ground-motion
prediction for a target site, the following equation (Rasmussen and Williams, 2006) can be
used to derive the predicted station term S�s for the site

S�s =S�s, 0 +S�s, s ð19Þ

where

S�s, 0 =X�Scs ð20Þ

S�s, s =V�sHs2 Ss � Xscsð Þ ð21Þ

and the prediction error of predicted station term S�s, s can be derived from its covariance
matrix as follows (Rasmussen and Williams, 2006)

VS�s, s
=V��s � V�sHs2V

�
sT ð22Þ

where S�s is a vector involving the predicted station term of each specific target site; S�s, 0 is
the station term predicted from the vector cs, which is equal to the predicted station term
of Model 0 (NCREE19 GMPE); S�s, s is the predicted station term evaluated from the simi-
larity of the observed HVRs and the locations of the target sites to the HVRs and locations
of the stations we observed and used to develop the model; X�S is a matrix corresponding to
the station-specific term of the median model for each target site; V�s is the covariance
matrix between the target sites and the stations with observed station terms used in the
regression analysis; and V��s is the covariance matrix between the target sites. The symbol
‘‘*’’ is employed to distinguish the target sites and the stations with station terms used in
the regression analysis. The covariance matrices V�s and V��s of Model 1, Model 2, and
Model 3 can be expressed as

Model 1 :V�s = ff 1
2 exp �a1

2d�HVR

� �
V��s = ff 1

2 exp �a1
2D��HVR

� �
+ fn1

2I
ð23Þ

Model 2 :V�s = ff 2
2 exp �a2

2D�ts

� �
V��s = ff 2

2 exp �a2
2D��ts

� �
+ fn2

2I
ð24Þ
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Model 3 :V�s = a1ff 1
2 exp �a1

2d�HVR

� �
+ a2ff 2

2 exp �a2
2D�ts

� �
V��s = a1ff 1

2 exp �a1
2D��HVR

� �
+ a2ff 2

2 exp �a2
2D��ts

� �
+ fn3

2I
ð25Þ

where D�ts is a matrix describing the spatial distance between target sites and stations with
observed station terms used in the regression analysis, and its element at ith row and jth
column represents the spatial distance in kilometers between the ith target site and jth sta-
tion with observed station terms used in the regression analysis; D��ts is a matrix describing
the spatial distance between target sites; D�HVR is a matrix describing the difference of
HVRs between target sites and stations with station terms used in the regression analysis;
and D��HVR is a matrix describing the difference of HVRs between target sites. Elements in
D�HVR and D��HVR can be expressed as

D�HVR, ij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnf

k = 1

ln HVR�i, k

� �
� ln(HVRj, k)

n o2

nf

vuuut
ð26Þ

D��HVR, ij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnf

k = 1

ln HVR�i, k

� �
� ln HVR�j, k

� �n o2

nf

vuuut
ð27Þ

where D�HVR, ij is the element of matrix D�HVR at ith row and jth column describing the differ-
ence of the HVRs between the ith target site and jth station used in the regression analysis;
D��HVR, ij is the element of matrix D��HVR at ith row and jth column describing the difference of
the HVRs between the ith target site and jth target site; HVR�i, k is HVR at kth frequency of
the ith target site. In this study, we just selected the exponential covariance function which
has mainly been used in the past studies to describe the SC of the ground motion. It is a
stationary and isotropic covariance function. Improvement of the covariance function may
improve the predicted station terms.

A key challenge of developing a GMPE is controlling the model behavior and constrain-
ing the prediction result for a ground-motion scenario with no available or insufficient
ground-motion data. One advantage of the proposed methodology is that the model beha-
vior and prediction are well constrained when the methodology is employed for the predic-
tion of the station terms with the HVRs and SC. When the observed HVRs of a target site
markedly differ from the HVRs previously observed and used to develop the model, or the
location of a target site is distant from the stations used to develop the model, the matrix
V�s will be almost equal to a zero matrix with all elements equal to zero, and matrix V��s will
be almost equal to the matrix Vs of Model 0. In that case, the predictions of Model 1,
Model 2, and Model 3 will be close to the prediction of Model 0 with the prediction error
as original site-to-site variability. This means that the observed HVRs and the location of
the target site are entirely new, and the prediction accuracy of its station terms cannot ben-
efit from past observations.

Illustration of applying HVRs and SC

This section illustrates how Vs30 and Z1.0 with HVRs and SC are implemented to predict
site effects. The methodology proposed in the previous section was used to develop four
models with EHVRs from seismic data and four other models with MHVRs from ambient
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data. The standard deviations of the station-specific residuals were compared to evaluate
the performance of each model. The results are individually introduced in this section.

Seismic motion data

The stations that have available station terms from NCREE19 GMPE and available
EHVRs were used to illustrate the proposed methodology. The number of stations used
for each period of spectral acceleration is presented in Table 2. Approximately 620 sta-
tions have both available EHVRs and station terms from NCREE19 GMPE. The correla-
tions of the station terms with regard to the distances DHVR and Dts are illustrated first
using semivariograms, which are measurements of the average similarity of data for differ-
ent distance bins (Goovaerts, 1997). The y-axes of semivariograms for distances DHVR and
Dts are calculated as

g DHVRð Þ=
1

2N DHVRð Þ
XN DHVRð Þ

i = 1

Dds2, i
2 ð28Þ

and

g Dtsð Þ=
1

2N Dtsð Þ
XN Dtsð Þ

i = 1

Dds2, i
2 ð29Þ

where N(DHVR) and N(Dts ) are the number of station pairs with distances between
DHVR � dDHVR\DHVR<DHVR + dDHVR and Dts � dDts\Dts<Dts + dDts , respectively; Dds2, i are
the differences between the station-specific residuals of the ith station pair. The derived
semivariograms with respect to the distances are shown in Figure 4a and b. Results of dif-
ferent station pairs within different distance ranges are also shown. The station-specific
residuals derived from NCREE19 GMPE (Model 0) are used for these plots, and the val-
ues of dDHVR and dDts are set as 0.1 and 1 km, respectively, for these plots. The values of g

are higher for larger Dts or DHVR values, as these plots indicate. This illustrates that the sta-
tion terms between two stations with shorter Dts and DHVR are more similar to each other,
providing a basis for the assertion that better prediction can be derived by considering Dts

or DHVR simultaneously, as in Model 3.

The model coefficients of each model are determined in a stepwise manner. Model 0 is
developed first, for which the station terms are predicted using only Vs30 and Z1.0 as in
NCREE19 GMPE. The model coefficients in vector cs and standard deviation fs2s which
maximizes the likelihood function are derived. They are identical to the results of
NCREE19 GMPE. To simplify the analysis procedure and improve the stability of the
regression analysis result, the model coefficients in vector cs of Model 0 are used for
Models 1, 2, and 3. Next, model coefficients ff 1, a1, ff 2, a2, fn1, and fn2, which maximize
the likelihood functions with constraints, were derived for Models 1 and 2 individually.
Again, model coefficients ff 1, a1, ff 2, and a2 are used to develop Model 3. The model
coefficients a1 and a2 and fn3, which maximize the likelihood function with the con-
straints, are derived for Model 3. Two constraints were used in this study to maximize the
likelihood function. One constraint is displayed in Equation 17. This constraint is used to
ensure that the site-to-site variability of different models is the same. The second con-
straint is that the values of f2

n1, f2
n2, and f2

n3 should be larger than 0.004. This constraint
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is used to avoid overfitting the data with no-existence or a very low level of noise. The
MATLAB command fmincon is used to derive the model coefficients which maximizing
the likelihood function with constraints. The derived model coefficients of Models 1, 2,
and 3, which maximize the likelihood with constraints, are presented in Table 1. Figure 5
illustrates the dependence of the station terms on two distances from the proposed models.
Figure 5a presents the correlation coefficient of the proposed Models 1 and 3 with respect
to distance DHVR for PGA. Figure 5b shows the correlation coefficient of the proposed
Models 2 and 3 with respect to distance Dts for PGA. Basically, Model 3 provides a more
refined description of the dependence of the station terms than Models 1 and 2.

After we derived the model coefficients of the four models, we calculated the predicted
station terms and the station-specific residuals for the stations used to develop the models.

(a)

(b)

Figure 4. (a) Semivariogram with respect to distance DHVR for the data sets with different Dts bins for
PGA. (b) Semivariogram with respect to distance Dts for the data sets with different DHVR bins for PGA.
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A comparison of the standard deviations of the station-specific residuals of the models is
presented in Table 2 and Figure 6a. The site-to-site variability can be reduced dramatically,
by 65%–90%, for various spectral periods when Vs30 and Z1.0 are implemented with the
EHVRs and SC simultaneously. This means that implementing Vs30 and Z1.0 with the
EHVRs and SC simultaneously can considerably improve the prediction accuracy of the
linear site effect. Figure 7a to d presents a comparison of the spatial distribution of the
station-specific residuals for each model. Significant regional differences can be observed
in the spatial distribution of the station-specific residuals for Model 0. This illustrates how
using SC can improve prediction accuracy. Implementing EHVRs can also improve the
prediction accuracy of the station term for local stations, but regional differences and SCs
remain. The best prediction accuracy can be achieved by implementing EHVRs and SC
simultaneously. The measured EHVRs at new target sites can be directly used to predict
the station terms of the new sites using the proposed model.

Ambient motion data

For ground-motion prediction, one challenge is deriving the accurate prediction of the sta-
tion term for a target site without any available seismic data. In the previous section, we
illustrate that implementing Vs30 and Z1.0 with the SC and EHVRs simultaneously can
improve the accuracy of the predicted station terms. However, in a real situation, a target
site may have no strong motion instrument or ground-motion records with which to eval-
uate the EHVRs. In this case, a possible alternative is to evaluate the MHVRs from the
ambient motion data of microtremors. Numerous studies have demonstrated that both
the EHVRs and the MHVRs can be used for site classification; however, for the same sta-
tion, EHVRs and MHVRs can differ.

Table 1. Model coefficients of EHVRs-SC-based model and MHVRs-SC-based model

T (s) a1 a2 a1 a2 ff 1 ff 2 fn1 fn2 fn3

PGA (g) 1.8339 0.2080 0.7405 0.9049 0.2105 0.2910 0.2716 0.1827 0.0928
0.01 1.8356 0.2080 0.7374 0.9055 0.2109 0.2911 0.2715 0.1828 0.0930
0.02 1.8412 0.2091 0.7261 0.9061 0.2134 0.2939 0.2716 0.1814 0.0893
0.03 1.7693 0.2069 0.7227 0.8979 0.2189 0.3028 0.2791 0.1847 0.0940
0.05 1.6020 0.1981 0.7060 0.8652 0.2597 0.3424 0.3013 0.2026 0.0960
0.075 1.5809 0.1893 0.7199 0.8267 0.3282 0.3989 0.3290 0.2384 0.0829
0.1 1.6499 0.1848 0.7790 0.8339 0.3384 0.4009 0.3370 0.2596 0.0696
0.15 1.9278 0.1760 0.7473 0.8989 0.3146 0.3697 0.3245 0.2600 0.0863
0.2 2.0594 0.2064 0.8327 0.9480 0.2569 0.3272 0.3211 0.2492 0.1127
0.25 2.0370 0.2068 0.9188 0.9510 0.2379 0.2805 0.2981 0.2583 0.1364
0.3 2.1707 0.2210 0.9583 0.9381 0.2447 0.2679 0.2683 0.2452 0.0848
0.4 2.3085 0.2374 0.7007 0.9641 0.2832 0.2471 0.1972 0.2408 0.0633
0.5 2.2881 0.2411 0.7001 0.9246 0.2853 0.2375 0.1781 0.2382 0.0632
0.75 2.1978 0.2411 0.7447 0.8396 0.2936 0.2362 0.1698 0.2434 0.0632
1 2.2855 0.2414 0.6102 0.8070 0.3278 0.2438 0.1004 0.2411 0.0633
1.5 2.1775 0.2531 0.5535 0.7597 0.3467 0.2803 0.1000 0.2273 0.0633
2 2.1433 0.2462 0.4832 0.7964 0.3501 0.3048 0.1211 0.2105 0.0633
3 2.2248 0.2271 0.4166 0.8709 0.3288 0.3142 0.1721 0.1976 0.0820
4 2.1202 0.2065 0.2818 0.9292 0.3016 0.3309 0.2307 0.1863 0.1297
5 2.1795 0.1880 0.1804 0.9614 0.3061 0.3483 0.2391 0.1720 0.1317
PGV (cm/s) 2.2945 0.2092 0.6219 0.9137 0.1883 0.2108 0.1991 0.1751 0.1116
PGD (cm) 2.0297 0.1980 0.4639 0.8764 0.2426 0.2651 0.2132 0.1845 0.1242

PGA: peak ground acceleration; PGD: peak ground displacement; PGV: peak ground velocity.
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Kawase et al. (2018) determined that MHVRs and EHVRs share similarities, especially
from low frequency until their first peak frequency but exhibit significant differences in
the higher-frequency range. They argued that this is because microtremors mainly consist
of surface waves, so that peaks associated with higher modes would not be prominent,
whereas seismic motions mainly consist of upwardly propagating body waves, so that
higher mode resonances can be observed in high-frequency domain (Kawase et al., 2018).
They also developed empirical amplitude ratios between MHVRs and EHVRs. These
ratios can be used to infer the EHVRs from the MHVRs for a target site. However, the
uncertainty of these empirical amplitude ratios is substantial and should be considered
when implementing EHVRs transferred from MHVRs to predict the station terms.

(a)

(b)

Figure 5. (a) Correlation coefficient of the proposed Models 1 and 3 with respect to distance DHVR plot
for PGA and (b) correlation coefficient of the proposed Models 2 and 3 with respect to distance Dts for
PGA.
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In this study, we sought to implement Vs30 and Z1.0 with the SC and MHVRs directly
to predict the station terms. Stations that have available station terms from the NCREE19
GMPE and available MHVRs collocated with strong motion stations were used to illus-
trate the proposed methodology. The number of stations used in this study for each period
of spectral acceleration is presented in Table 2. Approximately 112 sites with available
MHVRs and available station terms from the NCREE19 GMPE were included. Due to
the similarity between the EHVRs and MHVRs at the same site, we assumed that the
similarity of the station terms with identical DHVR values obtained from the EHVRs and
MHVRs were identical. As a result, model coefficients derived from the EHVRs (as can
be observed in Table 1) were used directly for applying the MHVRs to predict the station

(a)

(b)

Figure 6. Standard deviations of station-specific residuals before and after supplementing Vs30 and
Z1.0 with SC and (a) EHVRs and (b) MHVRs.

18 Earthquake Spectra 00(0)



terms. This assumption is a compromise because deriving an accurate model using only
MHVRs is difficult because of its current lower station numbers and sparse distribution.
We suggest developing a new model for MHVRs individually for the forward prediction
of ground motion when more MHVRs measurements that are collocated with strong
motion stations are available in the future.

We calculated the predicted station term and the station-specific residual for the sta-
tions that had available station terms from the NCREE19 GMPE and available MHVRs

(a) (b)

(c) (d)

Figure 7. Spatial distribution of the station-specific residuals for PGA (a) before supplementation with
EHVRs and SC (Model 0), (b) after supplementation with EHVRs (Model 1), (c) after supplementation
with SC (Model 2), and (d) after supplementation with EHVRs and SC (Model 3).
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using the model coefficient (see Table 1). A comparison of the standard deviations of the
station-specific residuals of the four models is presented in Table 2 and Figure 6b. Figure
8a to d presents a comparison of the station-specific residuals of each model for PGA.
The standard deviations of the station-specific residuals can also be reduced dramatically,
by 70%–95%, for various spectral periods when Vs30 and Z1.0 are implemented with the
MHVRs and SC simultaneously, even though only approximately 110 sites with available
MHVRs and station terms from the NCREE19 GMPE were used. The model implement-
ing the MHVRs has better prediction accuracy than that implementing only SC. This
result may be explained by the number and density of the stations with available MHVRs
and station terms from the NCREE19 GMPE as well as the SC not being as high as in the
case of EHVRs, as detailed in the previous section. This also illustrates that applying the
MHVRs (or EHVRs) and SC simultaneously can also improve the prediction accuracy of
the station terms in a sparse strong motion network situation. Table 3 presents the stan-
dard errors of the estimated standard deviations. The standard errors of the estimated
standard deviations from MHVRs are approximately twice that from EVHRs because of
the lower number of stations.

Application to a new site

The proposed EHVRs-SC-based and MHVRs-SC-based models can be used to predict the
station terms for a new site with available EHVRs or MHVRs information. For most

Table 3. List of the standard errors of the estimated standard deviations of the station-specific residuals
of each model when implementing SC and EHVRs, or SC and MHVRs

T (s) EHVRs MHVRs

Model no. Model no.

0 1 2 3 0 1 2 3

PGA (g) 0.0101 0.0072 0.0046 0.0019 0.0208 0.0133 0.0197 0.0031
0.01 0.0101 0.0071 0.0046 0.0019 0.0208 0.0133 0.0197 0.0031
0.02 0.0101 0.0071 0.0045 0.0018 0.0210 0.0133 0.0198 0.0029
0.03 0.0104 0.0074 0.0046 0.0019 0.0215 0.0137 0.0202 0.0031
0.05 0.0115 0.0078 0.0050 0.0018 0.0235 0.0138 0.0216 0.0028
0.075 0.0134 0.0082 0.0058 0.0014 0.0272 0.0140 0.0243 0.0019
0.1 0.0138 0.0083 0.0064 0.0011 0.0280 0.0143 0.0250 0.0016
0.15 0.0131 0.0078 0.0066 0.0014 0.0272 0.0143 0.0249 0.0023
0.2 0.0120 0.0081 0.0062 0.0019 0.0256 0.0159 0.0240 0.0035
0.25 0.0111 0.0076 0.0067 0.0025 0.0241 0.0150 0.0232 0.0047
0.3 0.0106 0.0065 0.0063 0.0014 0.0229 0.0129 0.0222 0.0026
0.4 0.0101 0.0041 0.0062 0.0011 0.0216 0.0077 0.0211 0.0022
0.5 0.0099 0.0036 0.0062 0.0011 0.0202 0.0063 0.0198 0.0022
0.75 0.0099 0.0034 0.0064 0.0011 0.0170 0.0049 0.0167 0.0019
1 0.0099 0.0016 0.0063 0.0010 0.0155 0.0021 0.0152 0.0016
1.5 0.0102 0.0015 0.0057 0.0010 0.0181 0.0022 0.0174 0.0018
2 0.0105 0.0019 0.0051 0.0010 0.0194 0.0030 0.0184 0.0020
3 0.0106 0.0032 0.0049 0.0014 0.0218 0.0055 0.0205 0.0027
4 0.0109 0.0051 0.0047 0.0027 0.0245 0.0097 0.0226 0.0052
5 0.0114 0.0053 0.0044 0.0029 0.0280 0.0114 0.0254 0.0060
PGV (cm/s) 0.0080 0.0049 0.0047 0.0024 0.0151 0.0084 0.0147 0.0042
PGD (cm) 0.0092 0.0051 0.0049 0.0028 0.0176 0.0083 0.0168 0.0044

PGA: peak ground acceleration; PGD: peak ground displacement; PGV: peak ground velocity.
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cases, MHVRs information from microtremor measurements is easier to derive for a new
site. However, the MHVRs-SC-based model was developed using fewer stations than the
EHVRs-SC-based model. To demonstrate the performance of the proposed MHVRs-SC-
based models, we use all MHVRs collected at 3699 sites to calculate the predicted station
term S�s, s for PGA using the proposed MHVRs-SC-based model and comparing it to the
predicted station terms S�s, s for PGA using all EHVRs collected at 721 stations and the
proposed EHVRs-SC-based model. A comparison of the spatial distribution of the pre-
dicted station terms S�s, s for PGA using the EHVRs-SC-based and MHVRs-SC-based
models is presented in Figure 9a and b. Similar spatial distributions of the predicted station
terms of the two models can be observed in these plots. This means that the same regional
characteristics can be appropriately represented by the MHVRs-SC-based model even
when the number of stations used to develop the model is limited. Figure 10a and b illus-
trates the spatial distribution of the standard deviation of the predicted station terms S�s, s
for PGA using the EHVRs-SC-based and MHVRs-SC-based models. Generally, higher
prediction errors can be found at the stations that are far away from the stations used to
develop the models. Prediction errors of the predictions are also higher for the MHVRs-

(a) (b)

(c) (d)

Figure 8. Station-specific residuals for PGA (a) before supplementation with MHVRs and SC (Model 0),
(b) after supplementation with MHVRs (Model 1), (c) after supplementation with SC (Model 2), and (d)
after supplementation with MHVRs and SC (Model 3).
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SC-based model than the EHVRs-SC-based model due to fewer number of stations being
used to develop the model.

When the proposed models are used with a new target site to predict the site effect, the
site parameters Vs30 and Z1.0 remain necessary. As mentioned, all stations with available

(a) (b)

Figure 9. Spatial distribution of the predicted station terms S�s, s for PGA using (a) SC and EHVRs at
721 stations and (b) SC and MHVRs at 3699 sites.

(a) (b)

Figure 10. Spatial distribution of the standard deviation of the predicted station terms S�s, s for PGA
using (a) SC and EHVRs at 721 stations and (b) SC and MHVRs at 3699 sites.
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EHVRs have Vs30 and Z1.0 information. Nearly all Z1.0 values are inferred through recei-
ver function analysis using seismic data (Lin et al., 2018). Some Vs30 values are determined
from direct measurements (Kuo et al., 2012, 2016), and some are inferred from multiple
proxies (Kwok et al., 2018) or through receiver function analysis using seismic data (Lin
et al., 2018). A comparison of the standard deviations of the station-specific residuals
before supplementation with the EHVRs and SC (Model 0) for all stations, stations with
inferred Vs30, and stations with measured Vs30 is presented in Figure 11a, and the stan-
dard deviations of the station-specific residuals after supplementation with the EHVRs

(a)

(b)

Figure 11. Comparison of the standard deviations of the station-specific residuals of all stations;
stations with inferred Vs30 and stations with measured Vs30 (a) before supplementation with EHVRs
and SC and (b) after supplementation with EHVRs and SC.
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and SC (Model 3) are presented in Figure 11b. The value of the standard deviation
depends on how the Vs30 value is derived when using the model before it is supplemented
with the EHVRs and SC. Higher prediction accuracy can be achieved for measured Vs30
when using the Vs30- and Z1.0-based model. After supplementation with the EHVRs and
SC, the standard deviation is no longer dependent on how the Vs30 value is derived. This
means that regardless of whether the Vs30 value is measured or inferred, almost identical
prediction accuracy can be achieved. In real applications, an efficient approach can be
employed to derive Vs30 information for a new target site when using the proposed
EHVRs-SC-based or MHVRs-SC-based models.

We conducted a test case to develop Models 1, 2, and 3 but without considering Vs30
and Z1.0 to predict the station terms, and the standard deviations of the station-specific
residuals of two cases (with and without Vs30 and Z1.0) were very close to each other. It
seems that Vs30 and Z1.0 are not necessary if SC and HVRs are used. However, for a new
target site that is far away from the stations with the available station terms, or with an
observed HVRs that differs greatly from the available HVRs, Vs30 and Z1.0 remain nec-
essary predictors for knowing site condition and capturing the site effects. Otherwise, a
predicted station term can only be derived as the average of all stations, and this is not
reasonable. Moreover, the nonlinear site effect term in NCREE19 GMPE uses Vs30 as a
predictor. According to these points, we believe that Vs30 and Z1.0 currently remain nec-
essary predictors for capturing site effects.

We supplement the proposed EHVRs-SC-based and MHVRs-SC-based models by add-
ing the S�s, s term to the NCREE19 GMPE as new GMPEs to illustrate their performance.
Figure 12a and b shows comparison plots of the median predictions for stations CHY005
and ILA034, respectively, produced by the NCREE19 GMPE, EHVRs-SC-based model,
and MHVRs-SC-based model proposed in this study for a vertical dip crustal strike-slip
fault with a moment magnitude (M) of 6 and closest distance from site to rupture plane
(Rrup) of 10 km. Comparisons of the EHVRs and MHVRs used in the EHVRs-SC-based
model and MHVRs-SC-based model for these two stations are presented in Figure 13a
and b. The NCREE19 GMPE produces almost identical predictions for these two stations
because their Vs30 values are similar. The Z1.0 values of these two stations are 385 and
783 m, respectively. This difference in Z1.0 does not cause considerable differences in the
NCREE19 GMPE predictions. However, both the EHVRs-SC-based and MHVRs-SC-
based models can represent the difference in the site amplification of these stations with
similar Vs30 values. Both the EHVRs-SC-based and MHVRs-SC-based models have con-
sistent prediction results for a station, even when the EHVRs and MHVRs of the station
are extremely different, as can be observed in Figure 13a and b. This means that similar
prediction accuracy can be achieved by both models. The proposed models indicate higher
site amplification of a short period spectral acceleration for the CHY005 station and a
lower site amplification of a short-period spectral acceleration for the ILA034 station. This
may be due to the higher EHVRs and MHVRs (from 0.1 to 10 Hz) observed at CHY005
station. Local peaks at frequencies of approximately 0.1 to 0.2 Hz can be observed in the
EHVRs and MHVRs of ILA034 station. However, no significant site amplification is iden-
tified for a long period of spectral acceleration at station ILA034. This indicates that the
observed higher HVR at a certain frequency do not directly relate to the observed higher
spectral acceleration for a given period. It also means that using the HVRs of a wide fre-
quency range as a vectorized predictor variable to quantify the site effect allows better
results than using only one or two predictors (e.g. a peak frequency or HVR at a certain
frequency) extracted from the HVRs. This case study demonstrates that the proposed
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methodology can help with implementing observed EHVRs and MHVRs in GMPEs to
improve the prediction accuracy of the site effect for a target site.

Conclusion

In this study, we propose a methodology that involves using HVRs calculated from strong
ground motion induced by earthquake (EHVRs) and from ambient ground motion
observed from microtremor (MHVRs) individually and with SC in a GMPE to improve
the prediction accuracy of the site effect. The proposed methodology was developed using

(a)

(b)

Figure 12. Comparison of the median prediction of the NCREE19 GMPE, EHVRs-SC-based model and
MHVRs-SC-based model proposed in this study for two individual stations for vertical dip crustal strike-
slip fault, M 6, Rrup 10 km; (a) station CHY005 and (b) station ILA034.
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the framework of two-step maximum-likelihood regression analysis. The prediction errors
of the station term resulting from different available ground-motion record numbers of
stations can be considered in the regression analysis. The model behavior and prediction
can be well constrained when it is implemented with the SC and EHVRs, or SC and
MHVRs through the proposed methodology to predict the station terms even when the
observed EHVRs or MHVRs of a target site differs entirely from those previously been
observed.

We illustrate the proposed methodology by developing a Vs30- and Z1.0-based model
supplemented with the SC and EHVRs collected at 628 strong motion stations and an
another Vs30- and Z1.0-based model supplemented with the SC and MHVRs collected at

(a)

(b)

Figure 13. Comparison of the EHVRs and MHVRs for (a) station CHY005 and (b) station ILA034.
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112 stations collocated with those of 112 strong motion stations. The standard deviations
of the station-specific residuals can be reduced up by to 90% with the supplementation of
SC and EHVRs, or SC andMHVRs. The spatial distribution of the station terms predicted
from the MHVRs at 3699 sites is consistent with the predicted station terms predicted from
the EHVRs at 721 strong motion stations when the proposed models are applied. This
means that the same regional characteristics can be well represented by the MHVRs-SC-
based model even when the number of stations used to develop the model is limited. The
proposed MHVRs-SC-based model can be improved when additional stations with avail-
able MHVRs information and available station terms from the NCREE19 GMPE are col-
lected and included.

We supplement the proposed EHVRs-SC-based and MHVRs-SC-based models by add-
ing the S�s, s term to the NCREE19 GMPE as new GMPEs to illustrate their performance.
Both models can represent the difference of site amplification for stations with similar
Vs30 values. Both models have consistent prediction results for the same station even when
the EHVRs and MHVRs of the station are markedly different.

From using the proposed EHVRs-SC-based model or MHVRs-SC-based model, the
prediction accuracy for stations with inferred Vs30 values is similar to that for stations
with measured Vs30. This means that whether the Vs30 value is measured or inferred, sim-
ilar prediction accuracy can be achieved. For a real application, an efficient approach can
be selected to derive Vs30 information for a new target site when using the proposed
model.

In summary, this study provides a methodology that involves using SC and EHVRs, or
SC and MHVRs in a GMPE to improve the prediction accuracy of the site effect for a tar-
get site with available EHVRs or MHVRs. The accuracy of ground-motion prediction can
be improved for a target site with available HVRs information by using the proposed
EHVRs-SC-based model or MHVRs-SC-based model. This will contribute to site-specific
probability seismic hazard analysis for a target site with available HVRs information.
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