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Seismic background level 
(SBL) growth can reveal slowly 
developing long‑term eruption 
precursors
Mie Ichihara 1*, Takao Ohminato 1, Kostas I. Konstantinou 2, Kazuya Yamakawa 3, 
Atsushi Watanabe 1 & Minoru Takeo 1

The accelerating growth of seismic unrest before eruptions has been observed at many volcanoes 
and utilized for eruption forecasts. However, there are still many eruptions for which no precursory 
unrest has been identified, even at well‑monitored volcanoes. The recent eruptions of Shinmoe‑dake, 
Japan, have been another negative example of this kind. Here we present seismological evidence 
that the eruption preparation had been ongoing at the shallow depths beneath Shinmoe‑dake 
for several months to a year. We investigated the seismic background level (SBL) of eleven‑year 
data recorded around the volcano, including two stations about 1 km from the eruptive crater. We 
searched for persistent weak signals, focusing on low‑amplitude time windows recorded during 
quiet nighttime. Then the spectra of daily background noise were classified by clustering analysis. 
The SBL analysis successfully revealed very weak precursory tremors from more than several months 
before the eruption, and residual tremors to the end of the eruptive period. The precursory signals 
grew acceleratory in a similar way as is assumed in the material failure forecast method applied to 
eruption forecasts. However, their growth was significantly slower and longer compared to other 
cases reported in the literature. Such slow and quiet eruption preparations would not be captured by 
conventional seismological methods. We expect that long‑term SBL analyses on proximal seismic 
data will help detect early precursors, even at seismically quiet volcanoes, and will also help towards 
judging the end of an eruptive period.

An essential step toward the goal of forecasting volcanic eruptions is to capture the precursory signals based on 
the knowledge of the unrest patterns, either common to all volcanic systems or specific to each volcano, indicating 
magma migration to shallow  depths1–4. Seismological methods are the most widely used monitoring techniques 
to achieve  this5–10, among other effective techniques including the detection of  geodetic11,12,  degassing13, and 
 thermal14 anomalies, as well as activation of minor or phreatic  eruptions15. There are some successful cases where 
the detection of unrests and experiences from past eruptions led to effective early  warning16–18 and quite a few 
cases where data analyses after eruptions revealed the possibility of eruption forecasts in  retrospect4,6.

The significance of any unrest is not necessarily related to its magnitude. The advancements in instrumenta-
tion and data analyses have been uncovering hidden seismological signs of upcoming eruptions. The very-long-
period (VLP, 2–100 s) signals get increasing attention as an eruption  indicator19–23. Modern event-detection and 
relocation algorithms have revealed the detailed sequence of broadband seismic activity toward an  eruption24. 
Vila et al.25,26 proposed to monitor the base level noise seismic spectrum (BLNSS) to detect early signals of vol-
canic unrest and found that BLNSS gradually increased over 10 months before ash eruptive episodes at Llaima 
volcano, Chile, in April,  200325. Analyzing non-volcanic persistent noise using seismic  interferometry27,28 or 
permutation  entropy29,30 could extract subtle underground changes prior to eruptions. These studies raised a hope 
that we may observe seismological precursors for any eruption with adequate monitoring systems and analytical 
techniques. On the other hand, there are still many major eruptions for which no precursory unrest was identified 
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or, the unrest was observed within a very short time  span3,4. Such a situation may happen even at well-monitored 
volcanoes like the 2014 eruption at Kuchinoerabujima,  Japan31 and the 2019 paroxysms at Stromboli,  Italy32.

The recent eruptions of Shinmoe-dake, an active cone of the Kirishima volcanic group in southern Kyushu, 
Japan (Fig. 1), added another negative example of this kind. Shinmoe-dake became active following a phreatic 
eruption in August 2008. Subsequently, two magmatic eruptions occurred in 2011 and 2017–2018, erupting 
50− 70× 109  kg33 and ∼ 30× 109  kg34,35 respectively. The 2011 event was the first major magmatic eruption 
of Shinmoe-dake since 1716–1717 producing ∼ 200× 109 kg of  tephra36,37, though eruptions involving small 
magmatic activity in 1822 ( < 109 kg of tephra) and 1959 (mainly phreatic eruption generating ∼ 9× 109 kg 
of tephra) have been  documented36,37, as well as minor phreatic eruptions (1991–1992, 2008–2010)33,36. Based 
on these records, Nakada et al.38 defined Shinmoe-dake as an example of less-frequent magmatic activity. As 
a consequence, the volcano before the 2011 eruption could be characterized as a closed  system39 for which 
the precursory unrest should in general be more  apparent4. A dense monitoring system had been operated at 
Kirishima, including two seismic stations about 1 km from Shinmoe-dake crater (Fig. 1a). The geodetic observa-
tion revealed a year-long inflation (the red upward arrow in Fig. 2a), whose source was about 10 km deep beneath 
the asterisk in Fig. 1a40. Because there were multiple active edifices closer to the inflation source, scientists had 
not considered its linkage to Shinmoe-dake until they observed its deflation upon the eruption (the red down-
ward arrow in Fig. 2a)41. This inflation-deflation pattern was observed also during the 2018 eruption (the blue 
arrows in Fig. 2a). The seismic event rate beneath Shinmoe-dake attained relatively high values (~ 10 events/
day) (Fig. 2b)41,42. Yamada et al.42 reported an increase of the number of low-frequency (LF) events, but not their 
magnitudes, before the eruptions. However, the seismicity exhibited no significant acceleration to the eruptions. 
For the last 10 years, scientists have been searching for geophysical signs indicating magma migration to shallow 
depths beneath Shinmoe-dake. Seismic interferometry revealed a slight decrease in seismic velocity beneath 
the crater in less than a month before the 2011 eruption, but no decrease before the 2018  eruption43. Kurihara 
et al.44,45 found that the event rate of deep low-frequency (DLF) earthquakes deeper than 17 km in the southeast 
(see star in Fig. 1a) showed a good correlation with the deep inflation in the northwest prior to the eruptions. Yet, 
any shallow precursors that were significant or common to both eruptions have not been identified to  date42,43.

Here we report the first seismological evidence that the preparation of eruptions at Shinmoe-dake had been 
ongoing at the shallow depth for several months to 1 year. We investigated the seismic background level (SBL) 
that is similar to the  BLNSS25,26, using only the selected silent periods of seismic data during the nighttime of 
each day. The SBL analysis of the eleven-year record allowed us to recognize weak precursory continuous tremor 
that was slowly growing prior to the 2011 and 2017–2018 eruptions, and whose growth accelerated toward the 
eruptions. We expect that such long-term weak seismic precursors may exist before more apparent signals are 
initiated prior to other eruptions as well, even at seismically quiet volcanoes.

Figure 1.  Overview of the monitoring system and the eruption sequences at Shinmoe-dake. (a) A map 
of Kirishima volcanic group in southwestern Japan (the white square in the inset: Goole Earth, Data SIO. 
NOAA.U.S. Navy NGA GEBCO). The white triangles indicate Shinmoe-dake and Iwo-yama. The colored circles 
are seismic stations used in this study, and white markers show other seismic stations. The vertices of the black 
triangle are the GEONET stations calculating the areal  strain43, which represents the deep inflation beneath 
the  asterisk40. The star indicates the epicenters of deep low-frequency earthquakes, whose rate correlated with 
the inflation at the  asterisk44. (b) A schematic representation of Shinmoe-dake eruption  sequences34,41. ① The 
August 2008 phreatic eruption, ② minor phreatic eruptions, ③ the main phase of the 2011 eruption, ④ the end 
of the 2011 eruption, ⑤ the 2017 eruption, ⑥the main phase of the 2018 eruption, ⑦ the April 2018 phreatic 
eruption at Iwo-yama, and ⑧ the end of the 2018 eruption. The purple, light-gray, and dark-gray clouds indicate 
phreatic, ash-forming, and vulcanian eruptions, respectively.
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Results
Figure 1a shows the permanent seismic stations used in this study by colored markers while other stations are 
indicated by open markers. Some stations had short-period seismometers, and some had broadband seismom-
eters (Fig. S1.1). All seismic stations recorded continuously with a sampling rate of 100 Hz. We analyzed the 
frequency range from 1 to 15 Hz. This paper mainly presents the SBL in 3.5–7 Hz because the variation of inter-
est was the most visible. Although many reported volcanic tremors have dominant frequencies around 1  Hz46, 
frequency bands above several Hz are also  informative47,48.

We analyze the data from May 1, 2008 to December 31, 2018. All stations except SMW were operated with 
the same instruments individually in the key periods discussed in this study (Fig. S1.1). At SMW station, we used 
data from short-period (1 Hz) seismometers before August 1, 2010, and a broadband seismometer afterward. We 
confirmed that the SBL growth before the 2011 eruption was captured by both sensors consistently (Fig. S1.2). 
When we discuss temporal variation at the individual stations, we do not correct for the site amplification effects 
in this study.

Temporal SBL variation. We calculated daily SBL in 3.5–7 Hz band and smoothed them by week to reduce 
the short-term effect (See Methods). Figure 2c presents the smoothed SBL of the five stations (colored circles in 
Fig. 1a). We observe characteristic variations indicated with arrows, which are prominent and correlated at the 
two stations closest to the crater (SMN and SMW) as well as temporally related to the deep inflation-deflation 
behaviors (arrows with corresponding colors and styles in Fig. 2a). These variations are compared with the erup-
tive events described in the next paragraph. We also noticed the elevated SBL every summer at all the stations, 
which is the most evident at SMW. Figure 2d and e present the stacked and normalized power spectra in the 
quiet time windows every night, which we refer to as PSBL (see “Methods”), at SMN and SMW, respectively. We 
see the spectral structures change with the characteristic variations of SBL.

We observe growth of SBL before the 2011 eruption (the red arrow in Fig. 2c) and before the 2017 and 2018 
eruptions (the light-blue arrows in Fig. 2c) simultaneously at SMN and SMW. The growth is visible also at more 
distant stations after July 2017 (KRS station malfunctioned). Then, SBL becomes apparently larger than usual at 
all the stations, growing from the 2017 eruption to the 2018. In this period, the persistent oscillation character-
izing SBL dominates the daytime human noise and can be identified as ‘continuous tremor’49. SBL decreases 
after the main phase of the 2018 eruption but does not return to the normal level until the end of May. The SBL 
increase and slight inflation of the deep source are observed in 2013 and 2014 without an eruption (the dashed 
orange arrows in Fig. 2a and c). The elevated SBL in this period has different features from those prior to the 

Figure 2.  The variations of SBL compared to other monitoring data. (a) The areal strain (in micro-strain) 
indicating the deep  inflation43. (b) Daily counts of shallow earthquakes determined by JMA beneath Shinmoe-
dake. The count does not include tremor or very-long-period events. (c) Logarithmic plots of weekly smoothed 
SBLs at the five stations indicated by the corresponding colors in Fig. 1a. The area below each SBL value is color-
filled for better visibility of the SBL ratio to the next stations. (d) and (e) The daily SBL spectra, PSBL , at SMN 
and SMW, respectively. The black triangles and circled numbers mark the events represented in Fig. 1b.
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2011 and 2017 eruptions. The increase is stepwise, the SBL ratio of SMN to SMW is apparently larger (Fig. 2c), 
and PSBL is poor in low-frequency components and has varying peaks (Fig. 2d and e).

We also note the SBL variations toward the end of eruptive periods. Although the deep inflation resumed 
after the co-eruption drop, it did not accompany SBL growth. After the main phase of the 2018 eruption, SBL 
stayed at the level prior to the 2017 eruption but abruptly went back to a lower level at the end of May 2018, while 
the recovery inflation continued for several months (the dashed-green arrows in Fig. 2a and c). The 2017–2018 
eruption ceased with two minor events in June 2018 (Fig. 1b). In the 2011 eruption, the close stations had opera-
tional problems after the main phase. Nevertheless, the other stations suggest that SBL remained relatively high, 
exhibited a peak at the end of the 2011 eruptive period, and declined at the end of the year, when the recovery 
inflation stopped (the dashed red arrows in Fig. 2a and c).

All the above-mentioned features are not apparent in daily RSEM or RSAM (Figs. 3 and S4). On the other 
hand, the RSEM is more sensitive to non-volcanic signals, including the 2016 Kumamoto-Oita earthquake 
sequence and its aftershocks, whose hypocenters are located 60–170 km away from Shinmoe-dake50.

Clustering analysis results. To quantify the spectral features described above (Fig. 2d and e), we per-
formed clustering  classification51,52 of PSBL (see “Methods”). The current clustering method emphasizes the simi-
larity in overall trend of spectra rather than local features like positions and shapes of spectral peaks. Besides, the 
number of clusters is arbitrary. Below we give similar names and colors to clusters that appear in similar periods.

The daily SBL values belonging to different clusters are distinguished by the colors in Fig. 4a and c, and 
monthly fractions of each cluster are shown in Fig. 4b and d. The characteristic variations of the smoothed SBL are 
represented mainly by green, red, and black clusters (enclosed by the magenta rectangles in the legends of Fig. 4). 
The blue and yellow clusters exhibit short-term day-by-day fluctuation and appear only in the quiet periods (SBL 
is generally small, and the volcanic activity is also low). Thus we regard them unrelated to the long-term SBL 
growth of current interest. Some components of the red and black clusters also exhibit short-term fluctuation 
in 2008–2010, which we discuss later.

The green cluster at SMW (Gw) mainly appears in the summer when SBL values are high, and correlates with 
the local precipitation (Fig. 4e). Although the specific mechanism for this is not known, the increased water flow 
may generate higher levels of noise, especially at station SMW that is located near a running river. However, 
the Gw cluster is also observed in 2013–2014 independently of the precipitation. At SMN, the green cluster 
(Gn) exclusively appears in the 2013–2014 period. Therefore, the high values of SBL in this period are regarded 
as unrelated to precipitation. Another transient increase in SBL at SMW in September 2011 (around ④) does 
not include the green clusters nor correlates with precipitation. We can infer that the increase is not caused by 
precipitation either, although the stations were not fully functioning in this period.

The red clusters dominate as SBL increases prior to the 2011 eruption and between the 2017 and 2018 erup-
tions at SMN (Rn1 and Rn2) and SMW (Rw1 and Rw2). The increase of SBL prior to the 2017 eruption is domi-
nated by black clusters (Kn at SMN and Kw at SMW). Both Kn and Kw increase with high precipitation as well, 
indicating that the SBL that grows prior to the 2017 eruption has some similarity to the precipitation noise. Also, 
the black clusters sparsely appear from 2008 to the 2011 eruption and generate scattered SBL values. However, 
the SBL behavior prior to the 2017 eruption is distinct because of the large values, the growth that is independent 
of the precipitation, and additional spectral features that have not been distinguished by the current clustering 
method but are visually apparent (Fig. 2d). The red and black clusters also constitute the SBL in the decaying 
period of the 2018 eruption from March to May 2018. From the beginning to the 2011 eruption, the red clusters 
are always present at both stations, some of which generate daily scattered variations. This may be partly because 
the different sensors before and after the 2011 eruptions (Fig. S1.1) may have affected the clustering analysis. On 
the other hand, it is also possible that the red clusters reflect the fact that the volcano was always active in that 
period with several phreatic eruptions.

Figure 3.  Comparison between RSEM (lines) and SBL at SMN, SMW, and TKW (patched areas) from 2016 to 
2018. The horizontal dashed lines are put as a reference of the normal level. Figure S4 shows the comparison at 
all the stations during the whole period.
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Signal locations. The SBL remains high from the 2017 eruption to the 2018 eruption (from ⑤ to ⑥ in 
Fig.  2c), obscuring the daytime human noise. We estimate the source location of the signals that character-
ize the high SBL using the same method as in the previous study for the 2011 eruption (the amplitude-based 
source location in the frequency band 3.5–7 Hz)47. The tremor sources for the 2011 eruption (Fig. 5b)47 and the 
2017–2018 eruptions (Figs. 5c) are distributed over a similar region beneath Shinmoe-dake.

In relation to these confirmed tremors, we investigate the SBL ratio between SMN and SMW stations, where 
the elevated levels of SBL prior to the eruptions is apparent. Figure 5a reveals that the SMW/SMN ratio is larger 
in the precursory periods (black arrows) than during the tremor periods (pink arrows) and during the elevated 
SBLs in 2013–2014 without subsequent eruptions (a green arrow). The logarithmic plot of SBL (Fig. 2c) also 
indicates that the ratios of SBLs at SMN and SMW to the other stations are larger in the precursory periods than 
in the other periods. From these ratios, we infer that the precursory SBL sources are shallower and more to the 
west than the tremors. To determine the source locations, we need to investigate the SBL distribution with more 
stations around the sources, which will be the goal of a future study.

Discussion
The accelerating growth of seismic measures, �̇ (e.g. tremor amplitude, BLNSS, energy rate, and event rates), is 
a typical feature of eruption precursors, which has been utilized referring to the material failure forecast method 
(FFM)53. FFM represents the growth of �̇ with time t  by d�̇/dt = A�̇α , where A and α are constants. It has 
empirically been shown that most of the volcanic precursors are fitted with α = 2 , so that 1/�̇ linearly decreases 
with  time4–9,54. Then, the trends were fitted by

where ts is the time when �̇ becomes infinity and can be regarded as the upper limit for the time of failure, tf  . 
Because the determination of tf  itself is controversial, FFM is mainly used to estimate ts5,6,54.

Figure 6 shows the smoothed SBL (Fig. 2c) and the daily SBL belonging to the relevant clusters (red before 
the 2011 eruption and red, green, and black afterward) in a linear scale (a). Their inverse (b) exhibits the linear 
downslope of 1/SBL prior to the 2011 (Fig. 6c), 2017, and 2018 eruptions (Fig. 6d). They are individually fitted 
by Eq. (1) with [ts

(

day
)

, a
(

µms−1/day
)

] listed in Table 1. The durations (100–300 days) of these downslopes 
are significantly longer than those previously reported for accelerating precursors fitted to FFM, which had a 
duration in the order of 10 days or  less4,5,26,54. The SBL acceleration may signify that some catastrophic processes 
had been slowly developing at the shallow depths of Shinmoe-dake for many months before the eruptions.

(1)1
�̇

= a(ts − t),

Figure 4.  The clustering analysis results at SMN (ab) and at SMW (cd) for the daily SBL spectra, PSBL , shown 
in Fig. 2d and e, respectively. (a,c) The smaller value of the SBLs in the night window and the next morning 
window is selected as the SBL of each day and is plotted with a circle of the color corresponding to its spectral 
cluster as in the legend, (b,d) The monthly fractions of days belonging to each cluster are shown by bars of the 
same color. The clusters of current interest are enclosed by the magenta rectangles in the legends. The gray 
clusters represent data with problems. (e) The daily precipitation data recorded near KVO station in Fig. 1a. The 
black triangles and circled numbers are the same as in Fig. 2.
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The elevated SBLs in 2013 and 2014 without subsequent eruptions exhibit temporal and spatial patterns dif-
ferent from the precursory SBL. In this period, the daily SBL spectra ( PSBL ) had distinct features with significant 
power in 5–10 Hz (see Gn and Gw clusters in Fig. S5). Also at the same period, Kirishima volcanic group shows 
several unrest signs, including the deep inflation (Fig. 2a) and increases in seismicity and volcanic tremor beneath 
various cones (JMA, 2020). More case studies are necessary to understand the variability and mechanisms of 
eruptive and non-eruptive SBL elevation.

Recently, Jolly et al.55 found slow evolution of very weak continuous tremors associated with ‘Silent’ dome 
emplacement at White Island, New Zealand, and interpreted them to be generated by the interaction of the 
hydrothermal system and slowly propagating magma. The central to northwestern region of Kirishima volcanic 
group is also known for abundant underground water at shallow  depth56,57. The signal found in SBL are generated 
at shallow depth, so that it might have a similar hydrothermal mechanism. We expect that long-term SBL analyses 
on proximal seismic data will help towards the extraction of such weak and slowly evolving precursory signals 
at the volcanoes where conventional methods fail to recognize unrest. It is also noted that the SBL monitoring 
is potentially useful when one needs to judge the end of an eruption period. Further studies are necessary for 
clarifying the source locations and mechanisms of the SBL noise.

Conclusion
The seismic background level (SBL) was evaluated, focusing on low-amplitude periods of seismic data recorded 
during quiet nighttime. It revealed precursory signals of Shinmoe-dake eruptions. The signals were evident 
mainly at the closest stations that were around 1 km from the eruptive crater. Our analysis indicated that the prep-
aration of eruptions at Shinmoe-dake had been ongoing right beneath Shinmoe-dake for many months before 
the eruptions. This finding will change the view of eruption preparation timescales, including the development of 

Figure 5.  (a) The ratio of weekly smoothed SBLs at SMW to SMN. Note that the vertical axis is logarithmic. 
Black indicates precursory periods (September 20–December 20, 2010 and April 1 –October 10, 2017), green 
indicates the non-eruptive SBL increase in 2013–2014 (February 10, 2013–June 1, 2014), and pink indicates 
volcanic tremor periods analyzed by Ichihara and  Matsumoto47 (January 13–February 7, 2011) and in this study 
(October 10, 2017–March 9, 2018). The black triangles and circled numbers are the same as in Fig. 2. (b,c) The 
tremor sources are presented for the 2011 eruption in (b)47 and for the 2017–2018 eruption in (c). The upper 
panel shows the topographic map centered at the Shnmoe-dake crater. The yellow frame encloses the area we 
searched for the sources (see Ichihara and  Matsumoto47). The cross section along the white line is displayed in 
the bottom panel. The vertical axis is the elevation above sea level, and light-blue area indicates the water-table 
 depth56.
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magma pathway from the deep reservoir to the crater. SBL exhibited accelerating increases before the eruptions, 
which was comparable with the prediction of FFM. On the other hand, the volcanic signals measured as SBL were 
significantly weaker, longer, and slower in their acceleration than the previously reported seismic precursors for 
eruptions at other volcanoes. The slow and quiet development in the shallow magma plumbing system toward an 
eruption might occur at volcanoes with developed hydrothermal systems, though such volcanos may also have 
strong precursory seismicity. The signatures observed with SBL were not apparent in conventional seismological 
parameters, including event rate and seismic amplitude measurements. We expect that long-term SBL analyses 
on proximal seismic data will help detect early precursors, even at seismically quiet volcanoes. Such an analysis 
could potentially be useful for the purpose of judging the end of an eruptive period.

Methods
Calculation of SBL and SBL spectra. We calculated the power spectral densities, Pf (t, f ) , from the three 
components at each station in a time window of 10.24 s sliding every 10 s, where t  is the central time of the 
window, and f  is the frequency from 1 to 15 Hz at 0.1-Hz intervals. Integrating Pf  from 3.5 to 7 Hz, we obtained 
the seismic power in the band, E(t) . There was daily variation of E(t) mainly due to human noise, which is low 
during night (6 pm-6am, see Fig. S2). We investigated the distribution of 

√
E(t) for the nighttime data (morning 

window, 00:00–06:00 JST, and night window, 18:00–24:00 JST) and employed the lowest 20-% value (the 20-th 
percentile) of 

√
E(t) in each of the morning and night windows as the daily SBL (two points per day). Chang-

ing the threshold from 20 to 5% did not lead to significant differences in the results (Fig. S3). We did not use 
the lowest value to avoid outliers, caused by missing data. We found short-term (daily to weekly) fluctuations, 
mainly caused by weather effects. To suppress them, we smoothed the daily SBL by taking the 20-th percentile 
in a seven-day window (14 points) sliding every 2  days. Alternatively, the daily average of E(t) or 

√
E(t) is 

comparable with the daily value of real-time seismic energy measurement (RSEM)10,58 or, more commonly, the 
real-time seismic amplitude measurement (RSAM)7 in the target frequency band. Note that RSEM is defined as 
E(t) or 

√
E(t) by different authors in the literature. Here we employ the latter definition to make RSEM directly 

comparable to SBL (Figs. 3 and S4).

Figure 6.  Application of FFM to SBL. (a) The daily SBL at SMN belonging to the clusters related to volcanic 
activity (Gn, Rn1, Rn2, and Kn). The colors are the same as in Fig. 5a. The light-magenta area shows the 
weekly smoothed SBL at SMN as in Fig. 2c. (b–d). The inverse of the data in (a), and the magnifications of the 
rectangles, (c) and (d). They exhibit linear slopes down toward the 2011 eruption (c) and the 2017 and 2018 
eruptions (d). The dotted lines show the fitting of the weekly smoothed SBL by Eq. (1) with the parameters listed 
in Table 1.

Table 1.  Parameters for fitting the SBL growth prior to eruptions by FFM.

Fitting period ts(day) a
(

µms−1/day
)

Residual (%)

Aug 25,2010–Jan 13, 2011 Mar 27, 2011 0.11 7.3

Aug 1, 2016–Oct 9, 2017 Feb 17, 2018 0.034 7.2

Nov 17, 2017–Feb 28, 2018 Aug 30, 2018 0.0069 13
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We also calculated the stacked and normalized SBL spectrum of each day, d , which is referred to as PSBL(d, f ) . 
The specific procedures are as follows. First, we selected time windows of which E(t) values were between 5 and 
20% from the lowest in each nighttime (from 18:00 on day d − 1 to 6:00 on d ). Second, we averaged Pf (t, f ) of 
the selected time windows by day and normalized it by the maximum value at 1–15 Hz.

Clustering analysis. Clustering analysis is becoming a popular tool in  volcanology59–61. We applied a clus-
tering analysis to characterize the daily SBL spectra of day d , PSBL(d, f ) . The clustering analysis was performed 
individually for SMN and SMW stations. The protocol was the same as Sect.  “Clustering analysis” of Yamakawa 
et al. (2022)61 applied to infrasound source directions. Here, we used PSBL(d, f ) as the input parameters.

Firstly, we defined the squared distance, L2mn , between PSBL of days dm and dn as

We selected the frequency band of 1.5–12 Hz after several trials in 1–15 Hz to capture both volcanic and non-
volcanic features we see in Fig. 2d and e. We obtained a distance matrix, L , whose elements are the inter-element 
distances, Lmn ( Lnn = 0 and Lmn = Lnm ). Secondly, we combined the matrix elements into clusters recursively 
following the general agglomerative hierarchical clustering  algorithm52. In every step, we updated the distance 
matrix with fewer elements representing the inter-cluster distances, employing the Lance-Williams recurrence 
 formula62,63 based on Ward’s  method51. Note that Ward’s method is known to be less affected by outliers. The 
result was visualized in the form of a dendrogram that shows the similarity relations among the different ele-
ments. Then we manually defined the boundary of the clusters according to the structure of the dendrogram 
confirmed by viewing the spectra in each cluster (Fig. S5).

Data availability
The precipitation data and seismic event catalog are provided by the Japan Meteorological Agency (JMA) (http:// 
www. jma. go. jp), and the GNSS data are by Geospatial Information Authority of Japan (https:// www. gsi. go. jp). 
The data to reproduce Figs. 1a, 2, 3, 4, 5 and 6 and figures in Supporting Information are open through zenodo 
(https:// doi. org/ 10. 5281/ zenodo. 77797 35) as Matlab fig files. The raw seismometer data at Kirishima are avail-
able under the joint usage of data and records of the Earthquake Research Institute of the University of Tokyo 
(https:// www. eri.u- tokyo. ac. jp/ en/ joint- usage- top/).
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